98 research outputs found

    Flux compactifications and supersymmetry breaking in 6D gauged supergravity

    Full text link
    We review on a recent construction of the on-shell supersymmetric brane action for the codimension-two branes with nonzero tension in the flux compactification of a 6D chiral gauged supergravity. On dimesionally reducing on 4D gauged supergravity for a new supersymmetric unwarped background with conical branes, we consider the modulus stabilization for determining the soft masses of the scalars localized on the branes and show that the bulk U(1)_R provides a new mechanism for mediating the SUSY breaking.Comment: 12 pages, no figures, Invited review for Modern Physics Letters A, Published versio

    The 6D SuperSwirl

    Full text link
    We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called ``rugby ball'' solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.Comment: 26 pages, 2 figures, JHEP3 class. Typos corrected, analysis expanded, references adde

    Supersymmetric codimension-two branes and U(1)_R mediation in 6D gauged supergravity

    Full text link
    We construct a consistent supersymmetric action for brane chiral and vector multiplets in a six-dimensional chiral gauged supergravity. A nonzero brane tension can be accommodated by allowing for a brane-localized Fayet-Iliopoulos term proportional to the brane tension. When the brane chiral multiplet is charged under the bulk U(1)_R, we obtain a nontrivial coupling to the extra component of the U(1)_R gauge field strength as well as a singular scalar self-interaction term. Dimensionally reducing to 4D on a football supersymmetric solution, we discuss the implication of such interactions for obtaining the U(1)_R D-term in the 4D effective supergravity. By assuming the bulk gaugino condensates and nonzero brane F- and/or D-term for the uplifting potential, we have all the moduli stabilized with a vanishing cosmological constant. The brane scalar with nonzero R charge then gets a soft mass of order the gravitino mass. The overall sign of the soft mass squared depends on the sign of the R charge as well as whether the brane F- or D-term dominates.Comment: 28 pages, no figures, version to appear in JHE

    Spinning Dragging Strings

    Full text link
    We use the AdS/CFT correspondence to compute the drag force experienced by a heavy quark moving through a maximally supersymmetric SU(N) super Yang-Mills plasma at nonzero temperature and R-charge chemical potential and at large 't Hooft coupling. We resolve a discrepancy in the literature between two earlier studies of such quarks. In addition, we consider small fluctuations of the spinning strings dual to these probe quarks and find no evidence of instabilities. We make some comments about suitable D7-brane boundary conditions for the dual strings.Comment: 25 pages, 4 figures; v2 refs added; v3 to appear in JHEP, clarifying comment

    Supersymmetric codimension-two branes in six-dimensional gauged supergravity

    Full text link
    We consider the six-dimensional Salam-Sezgin supergravity in the presence of codimension-2 branes. In the case that the branes carry only tension, we provide a way to supersymmetrise them by adding appropriate localised Fayet-Iliopoulos terms and localised corrections to the Chern-Simons term and modifying accordingly the fermionic supersymmetry transformations. The resulting brane action has N=1 supersymmetry (SUSY). We find the axisymmetric vacua of the system and show that one has unwarped background solutions with "football"-shaped extra dimensions which always respect N=1 SUSY for any value of the equal brane tensions, in contrast with the non-supersymmetric brane action background. Finally, we generically find multiple zero modes of the gravitino in this background and discuss how one could obtain a single chiral zero mode present in the low energy spectrum.Comment: 21 pages, no figures, A sign error in the gauge potential at the lower brane corrected and its consequent effect discusse

    Three-dimensional AdS gravity and extremal CFTs at c=8m

    Full text link
    We note that Witten's proposed duality between extremal c=24k CFTs and three-dimensional anti-de Sitter gravity may possibly be extended to central charges that are multiples of 8, for which extremal self-dual CFTs are known to exist up to c=40. All CFTs of this type with central charge 24 or higher, provided that they exist, have the required mass gap and may serve as candidate duals to three-dimensional gravity at the corresponding values of the cosmological constant. Here, we compute the genus one partition function of these theories up to c=88, we give exact and approximate formulas for the degeneracies of states, and we determine the genus two partition functions of the theories up to c=40.Comment: 17 pages, harvmac; v2: references added, version accepted in JHE

    Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds

    Full text link
    The six-dimensional effective action of F-theory compactified on a singular elliptically fibred Calabi-Yau threefold is determined by using an M-theory lift. The low-energy data are derived by comparing a circle reduction of a general six-dimensional (1,0) gauged supergravity theory with the effective action of M-theory on the resolved Calabi-Yau threefold. The derivation includes six-dimensional tensor multiplets for which the (anti-) self-duality constraints are imposed on the level of the five-dimensional action. The vector sector of the reduced theory is encoded by a non-standard potential due to the Green-Schwarz term in six dimensions. This Green-Schwarz term also contains higher curvature couplings which are considered to establish the full map between anomaly coefficients and geometry. F-/M-theory duality is exploited by moving to the five-dimensional Coulomb branch after circle reduction and integrating out massive vector multiplets and matter hypermultiplets. The associated fermions then generate additional Chern-Simons couplings at one-loop. Further couplings involving the graviphoton are induced by quantum corrections due to excited Kaluza-Klein modes. On the M-theory side integrating out massive fields corresponds to resolving the singularities of the Calabi-Yau threefold, and yields intriguing relations between six-dimensional anomalies and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections improve

    Note on New Massive Gravity in AdS3AdS_3

    Full text link
    In this note we study the properties of linearized gravitational excitations in the new massive gravity theory in asymptotically AdS3AdS_3 spacetime and find that there is also a critical point for the mass parameter at which massive gravitons become massless as in topological massive gravity in AdS3AdS_3. However, at this critical point in the new massive gravity the energy of all branches of highest weight gravitons vanish and the central charges also vanish within the Brown-Henneaux boundary conditions. The new massive gravity in asymptotically AdS3AdS_3 spacetime seems to be trivial at this critical point under the Brown-Henneaux boundary conditions if the Brown-Henneaux boundary conditions can be consistent with this theory. At this point, the boundary conditions of log gravity may be preferred.Comment: v3 typos corrected, refs added, version to appear in JHE

    Electrified BPS Giants: BPS configurations on Giant Gravitons with Static Electric Field

    Full text link
    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field.Comment: 32 pages, 1 eps figure; v2: Presentation of derivation of light-cone Hamiltonian improved, Refs adde
    • …
    corecore