72 research outputs found

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30

    Syndiotactic Polystyrene Based Blends: Crystallization and Phase Structure

    No full text

    Comparison of analytical models with cellular automata simulation of recrystallization in two dimensions

    No full text
    Cellular automata simulation of recrystallization in two dimensions is carried out. The simulated microstrutural evolution is compared in detail with the predictions from mathematically exact analytical theories considering both kinetic and geometrical aspects. Very good agreement is observed between the cellular automata simulation and the theoretical results. Moreover, the simulated data is used to test new expressions recently derived to describe the evolution of the interfaces between recrystallized grains. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation

    Microstructural descriptors and cellular automata simulation of the effects of non-random nuclei location on recrystallization in two dimensions

    No full text
    The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing such a situation are studied. Cellular automata simulation of recrystallization in two dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The simulation results are compared in detail with microstrutural descriptors normally used to follow transformation evolution. It is shown that the contiguity is particularly relevant to detect microstructural deviations from randomness. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation
    corecore