373 research outputs found
Mean Field Theory of Polynuclear Surface Growth
We study statistical properties of a continuum model of polynuclear surface
growth on an infinite substrate. We develop a self-consistent mean-field theory
which is solved to deduce the growth velocity and the extremal behavior of the
coverage. Numerical simulations show that this theory gives an improved
approximation for the coverage compare to the previous linear recursion
relations approach. Furthermore, these two approximations provide useful upper
and lower bounds for a number of characteristics including the coverage, growth
velocity, and the roughness exponent.Comment: revtex, 7 pages, 4 fig
Exact results for nucleation-and-growth in one dimension
We study statistical properties of the Kolmogorov-Avrami-Johnson-Mehl
nucleation-and-growth model in one dimension. We obtain exact results for the
gap density as well as the island distribution. When all nucleation events
occur simultaneously, the island distribution has discontinuous derivatives on
the rays x_n(t)=nt, n=1,2,3... We introduce an accelerated growth mechanism
where the velocity increases linearly with the island size. We solve for the
inter-island gap density and show that the system reaches complete coverage in
a finite time and that the near-critical behavior of the system is robust,
i.e., it is insensitive to details such as the nucleation mechanism.Comment: 9 pages, revtex, also available from http://arnold.uchicago.edu/~ebn
Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood
The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30
Metastable lifetimes in a kinetic Ising model: Dependence on field and system size
The lifetimes of metastable states in kinetic Ising ferromagnets are studied
by droplet theory and Monte Carlo simulation, in order to determine their
dependences on applied field and system size. For a wide range of fields, the
dominant field dependence is universal for local dynamics and has the form of
an exponential in the inverse field, modified by universal and nonuniversal
power-law prefactors. Quantitative droplet-theory predictions are numerically
verified, and small deviations are shown to depend nonuniversally on the
details of the dynamics. We identify four distinct field intervals in which the
field dependence and statistical properties of the lifetimes are different. The
field marking the crossover between the weak-field regime, in which the decay
is dominated by a single droplet, and the intermediate-field regime, in which
it is dominated by a finite droplet density, vanishes logarithmically with
system size. As a consequence the slow decay characteristic of the former
regime may be observable in systems that are macroscopic as far as their
equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file
Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields
An important aspect of real ferromagnetic particles is the demagnetizing
field resulting from magnetostatic dipole-dipole interaction, which causes
large particles to break up into domains. Sufficiently small particles,
however, remain single-domain in equilibrium. This makes such small particles
of particular interest as materials for high-density magnetic recording media.
In this paper we use analytic arguments and Monte Carlo simulations to study
the effect of the demagnetizing field on the dynamics of magnetization
switching in two-dimensional, single-domain, kinetic Ising systems. For systems
in the ``Stochastic Region,'' where magnetization switching is on average
effected by the nucleation and growth of fewer than two well-defined critical
droplets, the simulation results can be explained by the dynamics of a simple
model in which the free energy is a function only of magnetization. In the
``Multi-Droplet Region,'' a generalization of Avrami's Law involving a
magnetization-dependent effective magnetic field gives good agreement with our
simulations.Comment: 29 pages, REVTeX 3.0, 10 figures, 2 more figures by request.
Submitted Phys. Rev.
Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field
We study the two-dimensional kinetic Ising model below its equilibrium
critical temperature, subject to a square-wave oscillating external field. We
focus on the multi-droplet regime where the metastable phase decays through
nucleation and growth of many droplets of the stable phase. At a critical
frequency, the system undergoes a genuine non-equilibrium phase transition, in
which the symmetry-broken phase corresponds to an asymmetric stationary limit
cycle for the time-dependent magnetization. We investigate the universal
aspects of this dynamic phase transition at various temperatures and field
amplitudes via large-scale Monte Carlo simulations, employing finite-size
scaling techniques adopted from equilibrium critical phenomena. The critical
exponents, the fixed-point value of the fourth-order cumulant, and the critical
order-parameter distribution all are consistent with the universality class of
the two-dimensional equilibrium Ising model. We also study the cross-over from
the multi-droplet to the strong-field regime, where the transition disappears
Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics
The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the time evolution of
the order parameter in systems undergoing first-order phase transformations has
been extended by Sekimoto to the level of two-point correlation functions.
Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas
model, in which the elementary kinetic processes act on microscopic length and
time scales. The theoretical framework is used to analyze data from extensive
Monte Carlo simulations. The theory is inherently a mesoscopic continuum
picture, and in principle it requires a large separation between the
microscopic scales and the mesoscopic scales characteristic of the evolving
two-phase structure. Nevertheless, we find excellent quantitative agreement
with the simulations in a large parameter regime, extending remarkably far
towards strong fields (large supersaturations) and correspondingly small
nucleation barriers. The original KJMA theory permits direct measurement of the
order parameter in the metastable phase, and using the extension to correlation
functions one can also perform separate measurements of the nucleation rate and
the average velocity of the convoluted interface between the metastable and
stable phase regions. The values obtained for all three quantities are verified
by other theoretical and computational methods. As these quantities are often
difficult to measure directly during a process of phase transformation, data
analysis using the extended KJMA theory may provide a useful experimental
alternative.Comment: RevTex, 21 pages including 14 ps figures. Submitted to Phys. Rev. B.
One misprint corrected in Eq.(C1
Phase-field approach to heterogeneous nucleation
We consider the problem of heterogeneous nucleation and growth. The system is
described by a phase field model in which the temperature is included through
thermal noise. We show that this phase field approach is suitable to describe
homogeneous as well as heterogeneous nucleation starting from several general
hypotheses. Thus we can investigate the influence of grain boundaries,
localized impurities, or any general kind of imperfections in a systematic way.
We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or
recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical
Review
Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets
Magnetization switching in highly anisotropic single-domain ferromagnets has
been previously shown to be qualitatively described by the droplet theory of
metastable decay and simulations of two-dimensional kinetic Ising systems with
periodic boundary conditions. In this article we consider the effects of
boundary conditions on the switching phenomena. A rich range of behaviors is
predicted by droplet theory: the specific mechanism by which switching occurs
depends on the structure of the boundary, the particle size, the temperature,
and the strength of the applied field. The theory predicts the existence of a
peak in the switching field as a function of system size in both systems with
periodic boundary conditions and in systems with boundaries. The size of the
peak is strongly dependent on the boundary effects. It is generally reduced by
open boundary conditions, and in some cases it disappears if the boundaries are
too favorable towards nucleation. However, we also demonstrate conditions under
which the peak remains discernible. This peak arises as a purely dynamic effect
and is not related to the possible existence of multiple domains. We illustrate
the predictions of droplet theory by Monte Carlo simulations of two-dimensional
Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure
- …