26 research outputs found
Focus on Adoptive T Cell Transfer Trials in Melanoma
Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future
Natural Killer Lysis Receptor (NKLR)/NKLR-Ligand Matching as a Novel Approach for Enhancing Anti-Tumor Activity of Allogeneic NK Cells
NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands.We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2D(high) or NK30(high) donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies.NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities
Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration
Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25 × 106 human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days.
Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation.
Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes.
Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection
Lung Based Engineered Micro-Pancreas Sustains Human Beta Cell Survival and Functionality
The whole world has been affected by a dramatically increasing prevalence of diabetes. Today, the etiology of both type 1 and type 2 diabetes is thought to revolve around the dysfunction of β-cells, the insulin producing cells of the body. Within the pharmaceutical industry, the evaluation of new drugs for diabetes treatment is mostly done using cell lines or rodent islets and depends solely on the assessment of static insulin secretion. However, the use of cell lines or rodent islets is limiting lack of similarity of the human islet cells, leading to a constrain of the predictive value regarding the clinical potential of newly developed drugs. To overcome this issue, we developed an Engineered Micro-Pancreas as a unique platform for drug discovery. The Engineered Micro Pancreas is composed of (i) an organ-derived micro-scaffold, specifically a decellularized porcine lung-derived micro-scaffold and (ii) cadaveric islets seeded thereon. The Engineered Micro Pancreas remained viable and maintained insulin secretion in vitro for up to three months. The quantities of insulin were comparable to those secreted by freshly isolated human islets and therefore hold the potential for real-time and metabolic physiology mimicking drug screening
Long-Term Safety of Transplanting Human Bone Marrow Stromal Cells into the Extravascular Spaces of the Choroid of Rabbits
Incurable neuroretinal degeneration diseases cause severe vision loss and blindness in millions of patients worldwide. In previous studies, we demonstrated that transplanting human bone marrow stromal cells (hBMSCs) in the extravascular spaces of the choroid (EVSC) of the Royal College of Surgeon rats ameliorated retinal degeneration for up to 5 months. Assessing the safety of hBMSC treatment and graft survival in a large animal is a crucial step before initiating clinical trials. Here, we transplanted hBMSCs into the EVSC compartment of New Zealand White rabbits. No immunosuppressants were used. Transplanted cells were spread across the EVSC covering over 80 percent of the subretinal surface. No cells were detected in the sclera. Cells were retained in the EVSC compartment 10 weeks following transplantation. Spectral domain optical coherence tomography (SD-OCT) and histopathology analysis demonstrated no choroidal hemorrhages, retinal detachment, inflammation, or any untoward pathological reactions in any of transplanted eyes or in the control noninjected contralateral eyes. No reduction in retinal function was recorded by electroretinogram up to 10 weeks following transplantation. This study demonstrates the feasibility and safety of transplanting hBMSCs in the EVSC compartment in a large eye model of rabbits
NK NKLR expression profile in healthy donors vs. melanoma patients.
<p>The expression profile of each NKLR is presented in an independent panel, as indicated. Each dot represents either a healthy donor or a melanoma patient. Blood specimens were collected from 30 healthy donors and 40 stage IV melanoma patients with clinical evidence of disease. Y-axis denotes the percent of NKLR-positive cells out of gated NK cell. Horizontal lines represent median values. P value under each panel was calculated with an aparametric t-test and represents the statistical significance of the difference between median values.</p