91 research outputs found

    Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system.

    Get PDF
    The ontogeny of corticotropin-releasing hormone (CRH) receptor messenger ribonucleic acid (mRNA) in rat brain, using in situ hybridization, is the focus of this study. The developmental profile of CRH receptor using binding assays and receptor autoradiography has been reported, but may be confounded by the presence of a binding protein. The recent cloning of the rat CRH receptor gene has permitted the use of in situ hybridization histochemistry to map the distribution of cells expressing CRH receptor mRNA in the developing brain. We used antisense 35S-labeled oligodeoxynucleotide probes for the two reported splice-variants of the CRH receptor mRNA, which yielded essentially identical localization patterns. CRH receptor mRNA was clearly detectable in infant brain starting on the second postnatal day. Signal in hippocampal CA1, CA2 and CA3a increased to 300-600% of adult levels by postnatal day 6 with a subsequent gradual decline. In the amygdala, in contrast, CRH receptor mRNA abundance increased steadily between the second and the ninth postnatal days, to levels twice higher than those in the adult. In the cortex, CRH receptor mRNA levels were high on postnatal day 2 and decreased to adult levels by day 12. Transient signal over the hypothalamic paraventricular nucleus, observed on the second postnatal day, was not evident at older ages. These results demonstrate robust synthesis of CRH receptor as early as on the second postnatal day and unique region-specific developmental profiles for CRH receptor gene expression

    ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability.

    Get PDF
    The efficacy of ACTH, particularly in high doses, for rapid and complete elimination of infantile spasms (IS) has been demonstrated in prospective controlled studies. However, the mechanisms for this efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system have been attributed to activation of glucocorticoid receptors. The manner in which activation of these receptors improves IS and the basis for the enhanced therapeutic effects of ACTH--compared with steroids--for this disorder are the focus of this chapter. First, a possible "common excitatory pathway," which is consistent with the many etiologies of IS and explains the confinement of this disorder to infancy, is proposed. This notion is based on the fact that all of the entities provoking IS activate the native "stress system" of the brain. This involves increased synthesis and release of the stress-activated neuropeptide, corticotropin-releasing hormone (CRH), in limbic, seizure-prone brain regions. CRH causes severe seizures in developing experimental animals, as well as limbic neuronal injury. Steroids, given as therapy or secreted from the adrenal gland upon treatment with ACTH, decrease the production and release of CRH in certain brain regions. Second, the hypothesis that ACTH directly influences limbic neurons via the recently characterized melanocortin receptors is considered, focusing on the effects of ACTH on the expression of CRH. Experimental data showing that ACTH potently reduces CRH expression in amygdala neurons is presented. This downregulation was not abolished by experimental elimination of steroids or by blocking their receptors and was reproduced by a centrally administered ACTH fragment that does not promote steroid release. Importantly, selective blocking of melanocortin receptors prevented ACTH-induced downregulation of CRH expression, providing direct evidence for the involvement of these receptors in the mechanisms by which ACTH exerts this effect. Thus, ACTH may reduce neuronal excitability in IS by two mechanisms of action: (1) by inducing steroid release and (2) by a direct, steroid-independent action on melanocortin receptors. These combined effects may explain the robust established clinical effects of ACTH in the therapy of IS

    Effects of maternal and sibling deprivation on basal and stress induced hypothalamic-pituitary-adrenal components in the infant rat.

    Get PDF
    Prolonged maternal deprivation during early infancy increases basal- and stress-induced corticosterone (CORT) levels, but the underlying mechanism is not clear. In general, stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, with secretion and compensatory synthesis of hypothalamic cortcotropin-releasing hormone (CRH). In the infant rat, we have demonstrated that maximally tolerated acute cold stress induced a robust elevation of plasma CORT throughout the first 2 postnatal weeks. However CRH messenger RNA (CRH-mRNA) abundance 4 h subsequent to cold stress was enhanced only in rats aged 9 days or older. This suggests a developmental regulation of the CRH component of the HPA-response to this stressor. The present study examined whether increased basal and cold stress-induced CORT levels after 24 h of maternal deprivation were due to enhanced CRH-mRNA abundance in the hypothalamic paraventricular nucleus (PVN). CRH-mRNA abundance, and basal- and cold-induced plasma CORT levels were measured in maternally deprived 6 and 9-day-old pups compared to non-deprived controls. Maternal deprivation increased basal and cold-induced CORT levels on both 6 and 9-day-old rats. CRH-mRNA abundance in the PVN of deprived rats did not differ from that in non-deprived rats. Our results indicate that the enhanced basal and stress-induced plasma CORT observed after 24 h maternal deprivation is not due to increased CRH-mRNA abundance in the PVN

    Corticotropin releasing hormone antagonist does not prevent adrenalectomy-induced apoptosis in the dentate gyrus of the rat hippocampus.

    Get PDF
    Adrenalectomy in the mature rat leads to death of granule cells in the dentate gyrus of the hippocampal formation. The mechanisms underlying this cell death have not been fully clarified: It has been considered that the granule cells require adrenal steroids for their survival, since corticosterone replacement prevents their death. However, adrenalectomy-induced loss of negative feedback also increases levels of corticotropin releasing hormone (CRH) in several limbic brain regions. CRH is known to induce neuronal death in hippocampal regions rich in CRH receptors. This study tested the hypothesis that adrenalectomy-induced granule cell death is mediated via the enhanced activation of CRH receptors. The extent of granule cell degeneration was compared among 4 groups of young adult male rats: Sham-adrenalectomy controls, adrenalectomized rats, adrenalectomized rats infused with a CRH antagonist from the onset of steroid deprivation to the time of sacrifice, and adrenalectomized rats infused with vehicle only. (9-41)-alpha-helical CRH was administered using an osmotic pump into the cerebral ventricles. Adrenalectomy led to robust granule cell degeneration, which was maximal in the suprapyramidal blade of the dentate gyrus. Infusion of the CRH antagonist in doses shown to block CRH actions on limbic neurons did not decrease the number of degenerating granule cells compared with the untreated or vehicle-infused adrenalectomized groups. Therefore, blocking the actions of CRH does not prevent adrenalectomy-induced granule cell death, consistent with a direct effect of corticoids on the survival of these neurons

    Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone.

    Get PDF
    Over the last few decades, concepts regarding the presence of hormonal and molecular responses to stress during the first postnatal weeks in the rat and the role of the neuropeptide corticotropin releasing hormone (CRH) in these processes, have been evolving. CRH has been shown to contribute critically to molecular and neuroendocrine responses to stress during development. In turn the expression of this neuropeptide in both hypothalamus and amygdala is differentially modulated by single and recurrent stress, and is determined also by the type of stress (eg, psychological or physiological). A likely transcriptional regulatory factor for modulating CRH gene expression, the cAMP responsive element binding protein CREB, is phosphorylated (activated) in the developing hypothalamus within seconds of stress onset, preceding the transcription of the CRH gene and initiating the activation of stress-induced cellular and neuroendocrine cascades. Finally, early life stress may permanently modify the hypothalamic pituitary adrenal axis and the response to further stressful stimuli, and recent data suggest that CRH may play an integral role in the mechanisms of these long-term changes

    Corticotropin releasing factor receptor type II (CRF2) messenger ribonucleic acid levels in the hypothalamic ventromedial nucleus of the infant rat are reduced by maternal deprivation.

    Get PDF
    The stress neurohormone corticotropin releasing factor (CRF) activates at least two receptor types. Expression of corticotropin releasing factor receptor type II (CRF2) has been demonstrated in the hypothalamic ventromedial nucleus (VMH) of the adult and developing rat, but the physiological functions of VMH-CRF2 have not been elucidated. The VMH has been documented as an important participant in the regulation of food intake and its interactions with the hypothalamic-pituitary-adrenal axis and circadian rhythms. Regulation of VMH-CRF2 may thus play a role in the interplay of physiological alterations in metabolic state with the neuroendocrine and anorexic effects of CRF. This study determined the regulation of CRF2-mRNA expression in infant rats by the physiological consequences of maternal deprivation, i.e., fasting and stress. Using in situ hybridization, maternally deprived pups had an average 62% reduction of VMH-CRF2-mRNA levels compared with stress-free controls. Maternal deprivation also resulted in elevated plasma corticosterone levels (3.8 +/- 0.3 vs. 1.3 +/- 0.1 microg/dl) and an average 5.7% body weight loss. This study demonstrates that maternal deprivation, via fasting and HPA activation, leads to a dramatic decrease of CRF2-mRNA levels in the VMH. These results are consistent with a role for CRF2 activation in mediating some of the complex interactions of CRF (or urocortin) with regulation of food intake in the developing rat

    Differential regulation of the expression of corticotropin-releasing factor receptor type 2 (CRF2) in hypothalamus and amygdala of the immature rat by sensory input and food intake.

    Get PDF
    The physiological consequences of activating corticotropin-releasing factor receptor type 2 (CRF2) are not fully understood. The neuroanatomic distribution of this CRF receptor family member is consistent with roles in mediating the actions of CRF and similar ligands on food intake control and integrative aspects of stress-related behaviors. However, CRF2 expression in the adult rat is not influenced by stress, corticosterone (CORT), or food intake. In immature rat we have demonstrated striking downregulation of CRF2mRNA in hypothalamic ventromedial nucleus (VMH) after 24 hr of maternal deprivation, a paradigm consisting of both physiological/psychological stress and food deprivation. The current study aimed to distinguish which element or elements of maternal deprivation govern CRF2mRNA expression by isolating the effects of food intake and discrete maternal sensory cues on CRF2mRNA levels in VMH and in reciprocally communicating amygdala nuclei. In maternally deprived pups, CRF2mRNA levels in VMH and basomedial (BMA) and medial (MEA) amygdala nuclei were 62, 72, and 102% of control levels, respectively. Sensory inputs of grooming and handling as well as of the pups' own suckling activity-but not food intake-fully restored CRF2mRNA expression in VMH. In contrast, all manipulations tended to increase CRF2mRNA levels in BMA of maternally deprived rats, and surrogate grooming increased CRF2mRNA expression significantly above that of nondeprived controls. CRF2mRNA expression was not influenced significantly by plasma adrenocorticotropic hormone (ACTH) and CORT levels. Thus, in the immature rat, (1) CRF2 expression is regulated differentially in hypothalamic and amygdala regions, and (2) CRF2mRNA levels in VMH are governed primarily by maternal or suckling-derived sensory input rather than food intake or peripheral stress hormones. These findings indicate a region-specific regulation of CRF2mRNA, supporting the participation of the receptor in neurochemically defined circuits integrating sensory cues to influence specific behavioral and visceral functions

    Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA.

    Get PDF
    Early-life experiences, including maternal interaction, profoundly influence hormonal stress responses during adulthood. In rats, daily handling during a critical neonatal period leads to a significant and permanent modulation of key molecules that govern hormonal secretion in response to stress. Thus, hippocampal glucocorticoid receptor (GR) expression is increased, whereas hypothalamic CRH-messenger RNA (mRNA) levels and stress-induced glucocorticoid release are reduced in adult rats handled early in life. Recent studies have highlighted the role of augmented maternal sensory input to handled rats as a key determinant of these changes. However, the molecular mechanisms, and particularly the critical, early events leading from enhanced sensory experience to long-lasting modulation of GR and CRH gene expression, remain largely unresolved. To elucidate the critical primary genes governing this molecular cascade, we determined the sequence of changes in GR-mRNA levels and in hypothalamic and amygdala CRH-mRNA expression at three developmental ages, and the temporal relationship between each of these changes and the emergence of reduced hormonal stress-responses. Down-regulation of hypothalamic CRH-mRNA levels in daily-handled rats was evident already by postnatal day 9, and was sustained through postnatal days 23 and 45, i.e. beyond puberty. In contrast, handling-related up-regulation of hippocampal GR-mRNA expression emerged subsequent to the 23rd postnatal day, i.e. much later than changes in hypothalamic CRH expression. The hormonal stress response of handled rats was reduced starting before postnatal day 23. These findings indicate that early, rapid, and persistent changes of hypothalamic CRH gene expression may play a critical role in the mechanism(s) by which early-life experience influences the hormonal stress-response long-term
    • …
    corecore