7 research outputs found

    Smith-Purcell Radiation from Low-Energy Electrons

    Full text link
    Recent advances in the fabrication of nanostructures and nanoscale features in metasurfaces offer a new prospect for generating visible, light emission from low energy electrons. In this paper, we present the experimental observation of visible light emission from low-energy free electrons interacting with nanoscale periodic surfaces through the Smith-Purcell (SP) effect. SP radiation is emitted when electrons pass in close proximity over a periodic structure, inducing collective charge motion or dipole excitations near the surface, thereby giving rise to electromagnetic radiation. We demonstrate a controlled emission of SP light from nanoscale gold gratings with periodicity as small as 50 nm, enabling the observation of visible SP radiation by low energy electrons (1.5 to 6 keV), an order of magnitude lower than previously reported. We study the emission wavelength and intensity dependence on the grating pitch and electron energy, showing agreement between experiment and theory. Further reduction of structure periodicity should enable the production of SP-based devices that operate with even slower electrons that allow an even smaller footprint and facilitate the investigation of quantum effects for light generation in nanoscale devices. A tunable light source integrated in an electron microscope would enable the development of novel electron-optical correlated spectroscopic techniques, with additional applications ranging from biological imaging to solid-state lighting.Comment: 16 pages, 4 figure

    Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons

    Full text link
    Free electron radiation such as Cerenkov, Smith--Purcell, and transition radiation can be greatly affected by structured optical environments, as has been demonstrated in a variety of polaritonic, photonic-crystal, and metamaterial systems. However, the amount of radiation that can ultimately be extracted from free electrons near an arbitrary material structure has remained elusive. Here we derive a fundamental upper limit to the spontaneous photon emission and energy loss of free electrons, regardless of geometry, which illuminates the effects of material properties and electron velocities. We obtain experimental evidence for our theory with quantitative measurements of Smith--Purcell radiation. Our framework allows us to make two predictions. One is a new regime of radiation operation---at subwavelength separations, slower (nonrelativistic) electrons can achieve stronger radiation than fast (relativistic) electrons. The second is a divergence of the emission probability in the limit of lossless materials. We further reveal that such divergences can be approached by coupling free electrons to photonic bound states in the continuum (BICs). Our findings suggest that compact and efficient free-electron radiation sources from microwaves to the soft X-ray regime may be achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure

    Smith-Purcell Radiation from Low-Energy Electrons

    No full text
    Recent advances in the fabrication of nanostructures and nanoscale features in metasurfaces offer new prospects for generating visible light emission from low-energy electrons. Here we present the experimental observation of visible light emission from low-energy free electrons interacting with nanoscale periodic surfaces through the Smith-Purcell (SP) effect. We demonstrate SP light emission from nanoscale gratings with periodicity as small as 50 nm, enabling the observation of tunable visible radiation from low-energy electrons (1.5 to 6 keV), an order of magnitude lower in energy than previously reported. We study the emission wavelength and intensity dependence on the grating pitch and electron energy, showing agreement between experiment and theory. Our results open the way to the production of SP-based nanophotonics integrated devices. Built inside electron microscopes, SP sources could enable the development of novel electron-optical correlated spectroscopic techniques and facilitate the observation of new quantum effects in light sources. ©201

    Towards integrated tunable all-silicon free-electron light sources

    No full text
    Extracting light from silicon is a longstanding challenge in modern engineering and physics. While silicon has underpinned the past 70 years of electronics advancement, a facile tunable and efficient silicon-based light source remains elusive. Here, we experimentally demonstrate the generation of tunable radiation from a one-dimensional, all-silicon nanograting. Light is generated by the spontaneous emission from the interaction of these nanogratings with low-energy free electrons (2–20 keV) and is recorded in the wavelength range of 800–1600 nm, which includes the silicon transparency window. Tunable free-electron-based light generation from nanoscale silicon gratings with efficiencies approaching those from metallic gratings is demonstrated. We theoretically investigate the feasibility of a scalable, compact, all-silicon tunable light source comprised of a silicon Field Emitter Array integrated with a silicon nanograting that emits at telecommunication wavelengths. Our results reveal the prospects of a CMOS-compatible electrically-pumped silicon light source for possible applications in the mid-infrared and telecommunication wavelengths.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-1419807)Seventh Framework Programme (European Commission) (Agreement 328853CMC-BSiCS)United States. Air Force. Office of Scientific Research (Contract FA9550-19-1-0065)United States. Army Research Office (Contract W911NF-18–2–0048

    A framework for scintillation in nanophotonics

    No full text
    Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. Most research focuses on finding materials with brighter, faster, and more controlled scintillation. We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems. We then devised an approach based on integrating nanophotonic structures into scintillators to enhance their emission, obtaining nearly an order-of-magnitude enhancement in both electron-induced and x-ray–induced scintillation. Our framework should enable the development of a new class of brighter, faster, and higher-resolution scintillators with tailored and optimized performance.</jats:p
    corecore