629 research outputs found

    Exact Ground State of Several N-body Problems With an N-body Potential

    Full text link
    I consider several N-body problems for which exact (bosonic) ground state and a class of excited states are known in case the N-bodies are also interacting via harmonic oscillator potential. I show that for all these problems the exact (bosonic) ground state and a class of excited states can also be obtained in case they interact via an N-body potential of the form -e^2/\sqrt{\sumr^2_i} (or e2/i<j(rirj)2-e^2/\sqrt{\sum_{i<j} (r_i - r_j)^2}). Based on these and previously known examples, I conjecture that whenever an N-body problem is solvable in case the N-bodies are interacting via an oscillator potential, the same problem is also solvable in case they are interacting via the N-body potential. Based on several examples, I also conjecture that in either case one can always add an N-body potential of the form β2/iri2\beta^2/{\sum_{i} r_i^2} and the problem is still solvable except that the degeneracy in the bound state spectrum is now much reduced.Comment: 32 pages, No figur

    Some Exact Results for Mid-Band and Zero Band-Gap States of Associated Lame Potentials

    Get PDF
    Applying certain known theorems about one-dimensional periodic potentials, we show that the energy spectrum of the associated Lam\'{e} potentials a(a+1)m sn2(x,m)+b(b+1)m cn2(x,m)/dn2(x,m)a(a+1)m~{\rm sn}^2(x,m)+b(b+1)m~{\rm cn}^2(x,m)/{\rm dn}^2(x,m) consists of a finite number of bound bands followed by a continuum band when both aa and bb take integer values. Further, if aa and bb are unequal integers, we show that there must exist some zero band-gap states, i.e. doubly degenerate states with the same number of nodes. More generally, in case aa and bb are not integers, but either a+ba + b or aba - b is an integer (aba \ne b), we again show that several of the band-gaps vanish due to degeneracy of states with the same number of nodes. Finally, when either aa or bb is an integer and the other takes a half-integral value, we obtain exact analytic solutions for several mid-band states.Comment: 18 pages, 2 figure

    Cyclic Identities Involving Jacobi Elliptic Functions

    Get PDF
    We state and discuss numerous mathematical identities involving Jacobi elliptic functions sn(x,m), cn(x,m), dn(x,m), where m is the elliptic modulus parameter. In all identities, the arguments of the Jacobi functions are separated by either 2K(m)/p or 4K(m)/p, where p is an integer and K(m) is the complete elliptic integral of the first kind. Each p-point identity of rank r involves a cyclic homogeneous polynomial of degree r (in Jacobi elliptic functions with p equally spaced arguments) related to other cyclic homogeneous polynomials of degree r-2 or smaller. Identities corresponding to small values of p,r are readily established algebraically using standard properties of Jacobi elliptic functions, whereas identities with higher values of p,r are easily verified numerically using advanced mathematical software packages.Comment: 14 pages, 0 figure
    corecore