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Abstract. We state and discuss numerous mathematical identities involving Jacobi elliptic functions

sn (x,m), cn (x,m), dn (x,m), where m is the elliptic modulus parameter. In all identities, the argu-

ments of the Jacobi functions are separated by either 2K(m)/p or 4K(m)/p, where p is an integer and

K(m) is the complete elliptic integral of the first kind. Each p-point identity of rank r involves a cyclic

homogeneous polynomial of degree r (in Jacobi elliptic functions with p equally spaced arguments)

related to other cyclic homogeneous polynomials of degree r − 2 or smaller. Identities corresponding

to small values of p, r are readily established algebraically using standard properties of Jacobi elliptic

functions, whereas identities with higher values of p, r are easily verified numerically using advanced

mathematical software packages.
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1. Introduction

The Jacobi elliptic functions sn (x,m), cn (x,m) and dn (x,m) with real elliptic modulus parameter

m (0 ≤ m ≤ 1) have been extensively studied and used in mathematics, science and engineering [1, 4].

Recently, while studying [7, 8] the properties of quantum mechanical periodic potentials [2, 10], we

have discovered numerous mathematical identities involving Jacobi elliptic functions. The purpose of

this paper is to tabulate, derive and discuss these identities.

To the best of our knowledge, our results are not discussed in the mathematics literature. However,

we did find that geometrical constructions called the “poristic polygons of Poncelet” give rise to a few

of our very simplest identities like eqs. (3) and (32) involving just the Jacobi elliptic functions dn(x,m).

For a discussion of this geometrical approach, see references [5, 6].

Our new identities play a crucial role in obtaining a large class of novel periodic solutions of the

Korteweg-de Vries (KdV) and modified Korteweg-de Vries equations [9], the nonlinear Schrödinger

and KP equations, the sine-Gordon equation, as well as the λφ4 model [3]. The solutions obtained for

the KdV equation [9] all correspond to one gap periodic potentials. This process can be generalized

to obtain new solvable periodic potentials with a finite number of band gaps [8].

If K(m) denotes the complete elliptic integral of the first kind, the elliptic functions sn (x,m) and

cn (x,m) have real periods 4K(m), whereas dn (x,m) has a period 2K(m). The m = 0 limit gives

K(0) = π/2 and trigonometric functions: sn(x, 0) = sin x, cn(x, 0) = cos x, dn(x, 0) = 1. The m → 1

limit gives K(1) → ∞ and hyperbolic functions: sn(x, 1) → tanh x, cn(x, 1) → sech x, dn(x, 1) →

sech x. Therefore, our new identities for Jacobi elliptic functions can be thought of as generalizations

to arbitrary m of identities involving trigonometric and hyperbolic functions.

2. Description of the identities

In all the identities discussed in this paper, the arguments of the Jacobi functions are separated by

either 2K(m)/p or 4K(m)/p, where p is an integer (p ≥ 2) depending on whether the left hand side

of the identity is a periodic function of period 2K(m)/p or 4K(m)/p. For any given choice of p, we

define the quantities si, ci and di as follows:

si ≡ sn[x+
2(i − 1)K(m)

p
,m] , ci ≡ cn[x+

2(i − 1)K(m)

p
,m] , di ≡ dn[x+

2(i − 1)K(m)

p
,m] . (1)
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Similarly, we define

s̃i ≡ sn[x +
4(i − 1)K(m)

p
,m] ; c̃i ≡ cn[x +

4(i − 1)K(m)

p
,m] , d̃i ≡ dn[x +

4(i − 1)K(m)

p
,m] . (2)

Each p-point identity which we discuss will involve a cyclic homogeneous polynomial of degree r

(in Jacobi elliptic functions with p equally spaced arguments) expressed as a linear combination of

other cyclic homogeneous polynomials of degree r − 2n, where 1 ≤ n ≤ r
2
. We designate this to be a

p-point identity of rank r.

Let us consider a few examples to clarify the terminology and establish the notation. A simple

4-point identity of rank 2 is

d1d2 + c.p. ≡ d1d2 + d2d3 + d3d4 + d4d1 = A , (3)

where we have used the notation “+ c.p.” to denote cyclic permutations of the indices 1, 2, . . . , p.

Later, we have also used the notation “− c.p.” to denote cyclic permutations with alternating positive

and negative signs. The quantities in eq. (3) are

d1 ≡ dn(x,m) , d2 ≡ dn(x + K(m)/2,m) , d3 ≡ dn(x + K(m),m) , d4 ≡ dn(x + 3K(m)/2,m) . (4)

Setting x = 0, the constant A can be computed to be A = 2t(1 + t2) where

t ≡ dn(K(m)/2,m) = (1 − m)1/4 . (5)

Similarly, two examples of 3-point identities of rank 2 and rank 3 are

c̃1c̃2 + c.p. = −
q(q + 2)

(1 + q)2
, c̃1d̃2d̃3 + c.p. = −q2(c̃1 + c̃2 + c̃3) , (6)

where

q ≡ dn(2K(m)/3,m) , (7)

and the arguments are x, x+4K(m)/3 and x+8K(m)/3 respectively. Many more examples are given

in Tables 1, 2 and 3. Identities of rank 2 are given in Table 1, identities of rank 3 are given in Table

2 and some examples of identities of rank 4 or greater are displayed in Table 3.

Although x-independent constants like A do depend on the number of points p, the rank r, the

modulus parameter m, and the specific identity involved, for simplicity, we do not usually exhibit

these dependences explicitly. In fact, the symbols A, B and C appearing in the identities given in

Tables 1, 2 and 3 are just meant to denote generic constants. They do not all have the same values.
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For illustrative purposes, we now outline the proof of the p-point identity

d1d2 + c.p. = A , (8)

which is true for any integer value p > 1. The left hand side of this identity contains p terms. The

proof for p = 2 is trivial, since it is well-known that d1d2 ≡ dn(x,m) dn(x + K(m),m) =
√

1 − m

[1, 4]. For p = 3, one needs to compute d1d2 + d2d3 + d3d1 ≡ dn(x,m) dn(x + 2K(m)/3,m) + dn(x +

2K(m)/3,m) dn(x + 4K(m)/3,m) + dn(x + 4K(m)/3,m) dn(x,m). This can be accomplished by

algebraic simplification after using the addition theorem [1, 4]

dn(u + v) = (dnu dnv − m snu cnu snv cnv)/(1 − m sn2u sn2v) . (9)

The result is the constant A for the p = 3 case. One gets A = q(q + 2), where q has been defined in

eq. (7).

Similarly, the result for p = 4 has already been discussed following eq. (3). In principle, an analo-

gous algebraic procedure can be used for any value of p, but the algebra becomes increasingly lengthier.

We have therefore verified identity (8) numerically using the advanced mathematical software package

Maple. Note that for any chosen value of p, the constant A equals p in the limit m = 0 and vanishes

for m → 1.

Given any p-point identity of rank r, one way of generating a new p-point identity of rank r + 1 is

by differentiation and use of the well-known formulas

d

dx
sn(x,m) = cn(x,m) dn(x,m) ,

d

dx
cn(x,m) = −sn(x,m) dn(x,m) ,

d

dx
dn(x,m) = −m sn(x,m) cn(x,m). (10)

For example, differentiation of the p-point rank 2 identity (8) yields the rank 3 identity

s1c1(d2 + dp) + c.p. = 0 , (11)

which reduces to the well-known trigonometric identity

p∑

i=1

sin[2x +
2(i − 1)π

p
] = 0 (12)

in the limit m = 0.

Another p-point rank r identity of interest for r ≤ p is

d1d2 . . . dr + c.p. = A (r even) , (13)
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d1d2 . . . dr + c.p. = B
p∑

i

di (r odd) . (14)

One also has similar identities involving s̃i or c̃i (instead of di) for any odd value of p. All these identities

have the remarkable property of reducing the degree of the polynomial in the Jacobi functions from r

to 0 (1) depending on whether r is even (odd). For small values of p and r, the constants A,B in eqs.

(13) and (14) are easily evaluated. Some results are

A(p = 2, r = 2) = 2
√

1 − m , A(p = 3, r = 2) = q(q + 2) , A(p = 4, r = 2) = 2t(1 + t2) ,

B(p = 3, r = 3) = 3(
m

1 − q2
− 1) , B(p = 4, r = 3) =

√
1 − m ,

A(p = 4, r = 4) = 4(1 − m) . (15)

For the special limiting cases m = 0 and m = 1, one gets

A(m = 0, p, r) = p , B(m = 0, p, r) = 1 , A(m = 1, p, r) = B(m = 1, p, r) = 0 . (16)

Another way of obtaining additional identities is by manipulating established identities. For ex-

ample, for p = 3 and r = 3, eq. (14) is

d1d2d3 =
B

3
(d1 + d2 + d3) , (17)

where B ≡ B(p = 3, r = 3) is as given by eq. (15). Squaring identity (8) for p = 3 and using eqs. (15)

and (17) yields the new identity

d2
1d

2
2 + c.p. = −2(

m

1 − q2
− 1)

3∑

i=1

d2
i + [(1 − q2)2 +

6m

1 − q2
− 3 − 4m)] . (18)

A similar identity is also true for any p, and in fact we have used it in a crucial manner for obtaining

new periodic solutions of the KdV equation [9]. However, to establish this p-point identity, one needs

a generalization of identities (8) and (14). The generalized identities are

d1dn + c.p. = A , (n = 2, 3, 4, ...) , (19)

and

d1dj1dj2 + c.p. = B
p∑

i=1

di, (1 < j1 < j2 ≤ p) , (20)

which we have verified to be true both algebraically and numerically using Maple for many specific

choices of the integers n, j1, j2, p.
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3. Discussion and comments

By the techniques described in the previous section, we have obtained a large number of new identities,

many of which are displayed in Tables 1, 2 and 3. It should be noted that the modulus parameter m

is not transformed and remains unchanged in all identities. Although it is not easy to give a complete

systematic classification, we can comment on some general properties.

(i) For any identity of rank r, the left hand side is a cyclic homogeneous polynomial expression of

degree r with p terms.

(ii) If the polynomial on the left hand side is periodic with period 2K(m)/p [4K(m)/p], then the

identity involves arguments spaced by 2K(m)/p [4K(m)/p].

(iii) The right hand side involves polynomials of rank r− 2, r− 4,... which are “irreducible”, some ex-

amples being
∑

di,
∑

s̃i,
∑

c̃i,
∑

c̃id̃i,
∑

s̃id̃i,
∑

cisi,
∑

cisidi, etc. and all these irreducibles multiplied

by d2n
i where n = 1, 2, ....

(iv) In general, many of the identities of higher rank can be obtained from those of lower rank by either

differentiation or algebraic manipulation. Similarly, many of the identities of a given rank r (r > 2)

can be derived from lower rank identities as well as a few identities of the same rank. For example,

for p = 3, using the identities of rank 2 and three of the rank 3 identities as given by eqs. (32) to (34)

one can obtain all other identities of rank 3 as given in Table 2.

(v) The generic constants A, B, C in any identity can be determined by choosing specific, convenient

values of x in the arguments. The value x = 0 is a good choice in many cases. Note that for p ≤ 4,

we have given explicit values for all the constants appearing in the identities - for 3-point identities,

all constants are expressed in terms of q ≡ dn(2K(m)/3,m) , and for 4-point identities, all constants

are expressed in terms of t ≡ dn(K(m)/2,m) = (1 − m)1/4 . In writing the constants, we have made

frequent use of the relationship q4 + 2q3 + (m − 1)(2q + 1) = 0.

(vi) Some identities for even values of p involve alternating positive and negative signs. The symbol

“− c.p.” in these identities refers to cyclic permutations with alternating signs. Many of these identities,

like d2
1(d2+dp)−d2

2(d3+d1) · · ·−d2
p(d1+dp−1) = A(d1−d2+· · ·−dp), play a crucial role in determining
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band edge wave functions of solvable quantum mechanical periodic potentials [8]. For p = 4 this

identity is easily derived by starting from identity (3) with A = 2t(1 + t2) and t = (1 − m)1/4. On

multiplying both sides of this identity by (d1 − d2 + d3 − d4) and using the relations d1d3 = d2d4 =
√

1 − m, we immediately obtain the 4-point identity

d2
1(d2 + d4) − c.p. = 2t(1 + t + t2)(d1 − c.p.) . (21)

(vii) It should be noted that our identities involve cyclic permutations ±c.p. of terms which have no

clockwise or anticlockwise “handedness”. For example, for even p, there is no identity of the type

(d2
1d2 − c.p.) proportional to (d1 − c.p.), since the term d2

1d2 has a clockwise handedness. It is only

when one adds on an anticlockwise handed term d2
1dp that the the combination [d2

1(d2 + dp) − c.p.] is

indeed proportional to (d1 − c.p.).

(viii) In the limit m → 0, one recovers many known non-trivial trigonometric identities. In the limit

m → 1, since the period K(1) → ∞, one usually gets trivial hyperbolic function identities. Both these

limits serve as a useful check on all the new identities involving Jacobi elliptic functions obtained in

this paper. Of course, as mentioned previously, software packages like Maple or Mathematica quickly

provide confirmation of any identity to typically eight digit accuracy.

(ix) Identities for a given value of p, contain identities of the factors of p as special cases. For example,

for even p, only half of d1, ..., dp are independent since they satisfy identities

d1d p+2

2

= ... = d p

2
dp =

√
1 − m , (22)

coming from p = 2. Similarly, the full list of p = 6 identities contains p = 2, 3 identities. For example,

d1d4 = d2d5 = d3d6 =
√

1 − m and similarly d1d3 + d3d5 + d5d1 = d2d4 + d4d6 + d6d2 = q2 + 2q, where

q is as given by eq. (7).

(x) It should be noted that in many applications like finding new solutions of the KdV equation [9], the

identities needed involve summations over all combinations of many (say two) indices i, j = 1, . . . , p.

These combinations correspond to the sum of several cyclic identities discussed in the tables.

(xi) In this paper, we have concentrated our attention on cyclic identities in which the arguments

are separated by fractions of the periods 2K(m) or 4K(m) on the real axis. However, each one of
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our identities can be easily translated into a corresponding one in which the arguments are separated

by fractions of the periods i2K ′ or i4K ′ on the imaginary axis, where K ′ ≡ K(1 − m). For exam-

ple, the simple 2-point identity dn(x,m) dn(x + K(m),m) =
√

1 − m translates to the new identity

sn(u,m) sn(u + iK ′,m) = 1/
√

m. The general procedure consists of first replacing m by 1−m [which

in alternative standard notation [4] corresponds to replacing k ≡
√

m by k′ ≡
√

1 − m and K(m) by

K ′], then using the well-known results

sn(x, 1 − m) =
i cn(ix + K,m)√

1 − m sn(ix + K,m)
, cn(x, 1 − m) =

dn(ix + K,m)√
1 − m sn(ix + K,m)

,

dn(x, 1 − m) =
1

sn(ix + K,m)
,

and finally changing to a new variable u = ix + K.

In conclusion, even though Jacobi elliptic functions have been studied for approximately two cen-

turies, it is exciting to discover new cyclic identities connecting them. What makes our results doubly

exciting is that the identities play a vital role in the study of periodic potentials [8] and in yielding

new solutions of nonlinear differential equations of physical interest [9].
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Table 1: Identities of rank 2. The symbols A in eqs. (27) and (29) are used generically to denote

constants independent of x; the constants are in general all different.

p = 2:

d1d2 =
√

1 − m (23)

p = 3: [q ≡ dn(2K(m)/3,m)]

d1d2 + c.p. = q(q + 2) , c̃1c̃2 + c.p. =
−q(q + 2)

(1 + q)2
, s̃1s̃2 + c.p. =

1

m
(q2 − 1) (24)

c̃1(d̃2 + d̃3) + c.p. = s̃1(d̃2 + d̃3) + c.p. = c̃1(s̃2 + s̃3) + c.p. = 0 (25)

p = 4: [t ≡ dn(K(m)/2,m) = (1 − m)1/4]

d1d3 = d2d4 =
√

1 − m , d1d2 + c.p. = 2t(1 + t2) (26)

p = Even Integer:

d1d2 + c.p. = A , d1d3 + c.p. = A , . . . , d1d p

2
+ c.p. = A (27)

d1d p

2
+1 = d2d p

2
+2 = · · · = d p

2
dp =

√
1 − m (28)

p = Odd Integer:

d1d2 + c.p. = A , c̃1c̃2 + c.p. = A , s̃1s̃2 + c.p. = A

...

d1d p+1

2

+ c.p. = A , c̃1c̃ p+1

2

+ c.p. = A , s̃1s̃ p+1

2

+ c.p. = A (29)

c̃1(d̃2 + d̃p) + c.p. = 0 , s̃1(d̃2 + d̃p) + c.p. = 0 , c̃1(s̃2 + s̃p) + c.p. = 0

...

c̃1(d̃ p+1

2

+ d̃ p+3

2

) + c.p. = 0 , s̃1(d̃ p+1

2

+ d̃ p+3

2

) + c.p. = 0 , c̃1(s̃ p+1

2

+ s̃ p+3

2

) + c.p. = 0 (30)
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Table 2: Identities of rank 3. The symbols A in eqs. (58) through (65) are used generically to

denote constants independent of x; the constants are in general all different.

p = 2:

d2
1d2 ± d2

2d1 =
√

1 − m (d1 ± d2) , c1s1d2 + c2s2d1 = 0 (31)

p = 3: [q ≡ dn(2K(m)/3,m)]

d1d2d3 =
(q2 + m − 1)

1 − q2
(d1 + d2 + d3) (32)

c̃1c̃2c̃3 =
q2

1 − q2
(c̃1 + c̃2 + c̃3) (33)

s̃1s̃2s̃3 =
−1

1 − q2
(s̃1 + s̃2 + s̃3) (34)

c̃1(s̃2d̃3 + s̃3d̃2) + c.p. = 0 (35)

c̃1d̃2d̃3 + c.p. = −q2(c̃1 + c̃2 + c̃3) (36)

mc̃1s̃2s̃3 + c.p. = −(1 + q)2(c̃1 + c̃2 + c̃3) (37)

s̃1d̃2d̃3 + c.p. =
(2q3 + 3q2 − 2q + 3m − 3)

1 − q2
(s̃1 + s̃2 + s̃3) (38)

s̃1c̃2c̃3 + c.p. =
q(q + 2)

1 − q2
(s̃1 + s̃2 + s̃3) (39)

d̃1c̃2c̃3 + c.p. =
−q2

(1 + q)2
(d̃1 + d̃2 + d̃3) (40)

md̃1s̃2s̃3 + c.p. =
(−q3 − q2 + q + 1 − 2m)

1 + q
(d̃1 + d̃2 + d̃3) (41)

d̃1(d̃2c̃2 + d̃3c̃3) + c.p. = 2q(q + 1)(c̃1 + c̃2 + c̃3) (42)

ms̃1(s̃2c̃2 + s̃3c̃3) + c.p. = 2q(q + 1)(c̃1 + c̃2 + c̃3) (43)

d̃1(d̃2s̃2 + d̃3s̃3) + c.p. =
2(q2 + 2q − m + 1)

1 + q
(s̃1 + s̃2 + s̃3) (44)

c̃1(c̃2s̃2 + c̃3s̃3) + c.p. =
−2q(q + 2)

(1 + q)(1 − q2)
(s̃1 + s̃2 + s̃3) (45)

c̃1(c̃2d̃2 + c̃3d̃3) + c.p. =
−2q

(1 + q)2
(d̃1 + d̃2 + d̃3) (46)

ms̃1(s̃2d̃2 + s̃3d̃3) + c.p. =
2(q3 + q2 − q − 1 + m)

1 + q
(d̃1 + d̃2 + d̃3) (47)
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d2
1(d2 + d3) + c.p. =

2(q − m + 1)

1 + q
(d1 + d2 + d3) (48)

c̃2
1(c̃2 + c̃3) + c.p. =

−2(q − m + 1)

m
(c̃1 + c̃2 + c̃3) (49)

ms̃2
1(s̃2 + s̃3) + c.p. =

2(q3 + q2 − q + mq + 2m − 1)

1 − q2
(s̃1 + s̃2 + s̃3) (50)

c1s1(d2 + d3) + c.p. = 0 , c̃1d̃1(s̃2 + s̃3) + c.p. = 0 , d̃1s̃1(c̃2 + c̃3) + c.p. = 0 (51)

p = 4: [t ≡ dn(K(m)/2,m) = (1 − m)1/4]

d1d2d3 ± d2d3d4 + d3d4d1 ± d4d1d2 =
√

1 − m (±d1 + d2 ± d3 + d4) (52)

d2
1(d2 + d4) ± d2

2(d3 + d1) + d2
3(d4 + d2) ± d2

4(d1 + d3) = 2t(1 ∓ t + t2)(d1 ± d2 + d3 ± d4) (53)

d2
1d3 ± d2

2d4 + d2
3d1 ± d2

4d2 =
√

1 − m (d1 ± d2 + d3 ± d4) (54)

c1s1(d2 + d4) + c.p. = 0 , c1s1d3 + c3s3d1 = 0 , c2s2d4 + c4s4d2 = 0 (55)

p = Even Integer:

c1s1(d2 + dp) + c.p. = 0 , c1s1(d3 + dp−1) + c.p. = 0 , · · · , c1s1(d p

2
+ d p

2
+2) + c.p. = 0 (56)

c1s1d p

2
+1 + c p

2
+1s p

2
+1d1 = c2s2d p

2
+2 + c p

2
+2s p

2
+2d2 = · · · = c p

2
s p

2
dp + cpspd p

2
= 0 (57)

d2
1(d2 + dp) ± c.p. = A(d1 ± c.p.) , d2

1(d3 + dp−1) ± c.p. = A(d1 ± c.p.) (58)

d2
1(d p

2
+ d p

2
+2) ± c.p. = A(d1 ± c.p.) , d2

1d p

2
+1 ± c.p. =

√
1 − m(d1 ± c.p.) (59)

d1d2d3 ± c.p. = A(d1 ± c.p.) , d1djdk ± c.p. = A(d1 ± c.p.) (60)

p = Odd Integer:

For indices 1 < j1 < j2 ≤ p :

d1dj1dj2 + c.p. = A(d1 + c.p.) , c̃1c̃j1 c̃j2 + c.p. = A(c̃1 + c.p.) , s̃1s̃j1 s̃j2 + c.p. = A(s̃1 + c.p.) (61)

c̃1(s̃2d̃p + s̃pd̃2) + c.p. = 0 , · · · , c̃1(s̃ p+1

2

d̃ p+3

2

+ s̃ p+3

2

d̃ p+1

2

) + c.p. = 0 (62)

c̃1d̃2d̃p + c.p. = A(c̃1 + c.p.) , · · · , c̃1d̃ p+1

2

d̃ p+3

2

+ c.p. = A(c̃1 + c.p.) (63)

d̃1(d̃2c̃2 + d̃pc̃p) + c.p. = A(c̃1 + c.p.) , · · · , d̃1(d̃ p+1

2

c̃ p+1

2

+ d̃ p+3

2

c̃ p+3

2

) + c.p. = A(c̃1 + c.p.) (64)
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d2
1(d2 + dp) + c.p. = A(d1 + c.p.) , · · · , d2

1(d p+1

2

+ d p+3

2

) + c.p. = A(d1 + c.p.) (65)

c1s1(d2 + dp) + c.p. = 0 , · · · , c1s1(d p+1

2

+ d p+3

2

) + c.p. = 0 (66)

Note that additional identities can be obtained by changing the pair (c̃, d̃) in eq. (63) or eq. (64)

into any of the pairs (c̃, s̃), (s̃, d̃), (s̃, c̃), (d̃, c̃), (d̃, s̃). Likewise, additional identities can be obtained by

changing d to c̃ or s̃ in eq. (65) and by changing (c, s, d) to (c̃, d̃, s̃) or (d̃, s̃, c̃) in eq. (66).
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Table 3: Some identities of rank 4 and above. The symbols A,B,C in eqs. (76) through (79)

are used generically to denote constants independent of x; the constants are in general all different.

r = 4, p = 2:

d3
1d2 ± d3

2d1 =
√

1 − m (d2
1 ± d2

2) , d2
1d

2
2 = 1 − m (67)

mc1s1c2s2 =
√

1 − m[1 − s2
1 − s2

2] , c1d1c2d2 = −(1 − m)s1s2 , s1d1s2d2 = −c1c2 (68)

r = 4, p = 3: [q ≡ dn(2K(m)/3,m)]

s1c1d2d3 + c.p. =
(q2 + m − 1)

1 − q2
(s1c1 + c.p.) (69)

d3
1(d2 + d3) + c.p. =

2mq

1 − q2
(d2

1 + c.p.) − 2(1 − m) (70)

s̃1d̃1c̃2c̃3 + c.p. =
q2

1 − q2
(s̃1d̃1 + c.p.) (71)

c̃1d̃1s̃2s̃3 + c.p. =
−1

1 − q2
(c̃1d̃1 + c.p.) (72)

m2c1s1c2s2 + c.p. =
2mq

1 − q2
(d2

1 + c.p.) + [m − (2 − m)(1 + q)2] (73)

r = 5, p = 3:

d3
1(s2c2 + s3c3) + c.p. =

−2mq

1 − q2
(s1c1d1 + c.p.) (74)

ms̃4
1(s̃2 + s̃3) + c.p. =

2(q2 + m − 1)

1 − q
(s̃3

1 + c.p.) +
2(q3 + q2 + mq − q + 2m − 1)

(1 − q2)2
(s̃1 + c.p.) (75)

r = 6, p = 6:

d3
1(d

2
2d3 + d2

6d5) + c.p. = A(d4
1 + c.p.) + B(d2

1 + c.p.) + C (76)

r = 8, p = 6:

c1d1c2d2s3s4s5s6 + c.p. = A(s1s2s3s4s5s6) (77)

r, p:

mps2
1s

2
2 · · · s2

p = A(s2
1 + c.p.) + B (r = 2p , p = even) (78)
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For indices 1 < j1 < j2 < · · · < jr−1 ≤ p :

d1dj1dj2 · · · djr−1
+ c.p. = A (r = even , p)

d1dj1dj2 · · · djr−1
+ c.p. = B(d1 + c.p.) (r = odd , p)

s̃1s̃j1 s̃j2 · · · s̃jr−1
+ c.p. = A , c̃1c̃j1 c̃j2 · · · c̃jr−1

+ c.p. = A (r = even , p = odd)

s̃1s̃j1 s̃j2 · · · s̃jr−1
+ c.p. = B(s̃1 + c.p.) , c̃1c̃j1 c̃j2 · · · c̃jr−1

+ c.p. = B(c̃1 + c.p.) (r = odd , p = odd)

dr−1
1 (d2 + dp) + c.p. = A(dr−2

1 + c.p.) + B(dr−4
1 + c.p.) + ... . (79)

Eq. (79) ends with a constant if r is odd and with a term proportional to (d1 + c.p.), if r is even.
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