16 research outputs found

    Strain-Induce Shift of the Crystal-Field Splitting of SrTiO(3) Embedded in Scandate Multilayers

    No full text
    Strained SrTiO₃ layers have become of interest, since the paraelectric-to-ferroelectric transition temperature can be increased to room temperature. A linear relationship between strain and energy splitting of the fundamental transitions in the fine structure of Ti L(₂,₃) and O K edges is observed, that can be exploited to measure strain from electronic transitions, complementary to measuring local strain directly via high-resolution transmission electron microscopy (HRTEM) images. In particular, for both methods, the geometrical phase analysis performed on high-resolution images and the measurement of the energy splitting by energy loss spectroscopy, tensile strain of SrTiO₃ layers was measured when grown on DyScO₃ and GdScO₃ substrates. The effect of strain on the electron loss near edge structure (ELNES) of the Ti L(₂,₃) edge in comparison to unstrained samples is analyzed. Ab initio calculations of the Ti L(₂,₃) and O K edge show a linear variation of the crystal field splitting with strain. Calculated and experimental values of the crystal field splitting show a very good agreement

    Structural, Interfacial, and Electrochemical Stability of La0.3Ca0.7Fe0.7Cr0.3O3-δ Electrode Material for Application as the Oxygen Electrode in Reversible Solid Oxide Cells

    No full text
    A detailed study aimed at understanding the structural, interfacial, and electrochemical performance stability of La0.3Ca0.7Fe0.7Cr0.3O3-δ (LCFCr) electrode material for application as the oxygen electrode in reversible solid oxide cells (RSOCs) is presented. Specifically, emphasis is placed on the stability of the LCFCr oxygen electrode during oxygen evolution (electrolysis mode), whereby many known electrode materials are known to fail due to delamination. The porous microstructure of the electrode was characterized by nanoscale X-ray microscopy (XRM) to reveal the percentage porosity, pore connectivity, average pore size, and electrochemical surface area, etc. Under polarization in a two-electrode symmetrical-cell configuration, while the working electrode was under anodic polarization, a very stable performance was observed at a cell potential of 0.2 V, although increasing the cell potential to 0.65 V caused significant performance degradation. This degradation was reversible when the cell was run at open circuit for 10 h. High-resolution transmission electron microscopy and wavelength dispersive spectroscopy revealed that the working electrode (LCFCr)/electrolyte (GDC) interface was structurally and chemically stable after hundreds of hours under polarization with no interdiffusion of the various species observed across the interface, hence rendering LCFCr a viable alternative for the oxygen electrode in RSOCs

    Lithium ion storage in 1D and 2D redox active metal-organic frameworks

    No full text
    The lithium ion storage properties of a series of metal-organic frameworks (MOFs) with formula {[M(L)(H2O)2]H2O}n and [M(CA)(Pyz)]n (where L refers to the tetraoxolene ligands: CA = chloranilate and DHBQ = dihydroxybenzoquinone; Pyz = pyrazine; M = Fe and Mn) and exhibiting a 1D and 2D structure, respectively, have been studied. The 1D MOFs ({[M(L)(H2O)2]H2O}n) show higher reversible capacity values for lithium ion insertion with respect to 2D structures containing two organic ligands (M(CA)(Pyz)]n). The gravimetric capacity for the 1D Fe-CA MOF is 75 mAh/g at 2.16 mA/g (∼ 1 lithium atom per formula unit) higher than for the Mn complexes which is 65 mAh/g at 2.12 mA/g, though isostructural. Lithium ion insertion in the 1D Mn-CA chains takes place at 2.4 V vs. Li+/Li which is ∼700 mV higher than what is recorded for the Fe analogue. This result is most probably due to much more stable d5 electronic configuration of Mn2+ than d6 of Fe2+ in its isostructural Fe-based framework analogue of the final reduced phases. The 1D Fe-DHBQ capacity is higher than its manganese analogue 75 mAh/g at 2.5 mA/g (0.8 lithiums) against 40 mAh/g. In general, the high voltages of reaction in these 1D MOFs suggest that they involve the participation of the ligand on the redox processes along with the reduction of the transition metal if any. In fact, the potential of ion insertion changed depending on the metal. This fact along with the absence of evidence of conversion reaction by x-ray diffraction of cycled electrodes suggests that the charge delocalization may be all along the metal-ligand molecular framework participating as a whole hybrid unit in the lithium storage

    From theory to experiment: BaFe0.125Co0.125Zr0.75O3-delta, a highly promising cathode for intermediate temperature SOFCs

    Get PDF
    In a recent theoretical study [Jacobs et al., Adv. Energy Mater., 2018, 8, 1702708], BaFe0.125Co0.125Zr0.75O3-delta was predicted to be a stable phase with outstanding performance as an auspicious cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). It is shown here that the theoretical predictions are valid. The material can be synthesized by the citrate method as a single cubic Pm3m phase with a significant amount of oxygen vacancies, randomly distributed in the anionic sublattice facilitating oxygen vacancy conduction. A thermal expansion coefficient of 8.1 x 10(-6) K-1 suggests acceptable compatibility with common electrolytes. Electrochemical impedance spectroscopy of symmetrical cells gives an area-specific resistance of 0.33 Omega cm(2) at 700 degrees C and 0.13 Omega cm(2) at 800 degrees C. These values are reduced to 0.13 Omega cm(2) at 700 degrees C and 0.05 Omega cm(2) at 800 degrees C when the material is mixed with 30 wt% Ce0.9Gd0.1O2-delta
    corecore