24 research outputs found
Oscillating Shells and Oscillating Balls in AdS
It has recently been reported that certain thin timelike shells undergo
oscillatory motion in AdS. In this paper, we compute two-point function of a
probe field in the geodesic approximation in such an oscillating shell
background. We confirm that the two-point function exhibits an oscillatory
behaviour following the motion of the shell. We show that similar oscillatory
dynamics is possible when the perfect fluid on the shell has a polytropic
equation of state. Moreover, we show that certain ball like configurations in
AdS also exhibit oscillatory motion and comment on how such a solution can be
smoothly matched to an appropriate exterior solution. We also demonstrate that
the weak energy condition is satisfied for these oscillatory configurations.Comment: 23 pages, 5 figures; v2: refs added; v3: JHEP versio
Certified Organization, Volume3, Special Issue 6
ABSTRACT: The paper describes the development of a low cost and simple amplifier circuit for ECG acquisition from a single lead. The acquisition circuit uses clip-type flat metal plate limb electrodes to sense the heart signals and a basic amplifier circuit is designed using JFET OP-AMP IC LF-353 with the required gain to suitably amplify the signal. The amplified data fed into a computer using USB-6009 is then denoised, processed and displayed using LabVIEW software. The developed ECG acquisition module is evaluated by visual comparison of simultaneously recorded data acquired by the module with and by the MP-150 amplifier system from BIOPAC Systems Inc. Tests have been performed in the laboratory on several volunteers in the age group of 28-60 and the results were quiet satisfactory
Fracture of neck of femur with fracture of posterior column of acetabulum: a rare case of floating hip
Injuries around the hip joint are one of the most common orthopedic injuries and these types of injuries are grossly debilitating until treated properly. Simultaneous occurrence of fracture of proximal femur with fracture of ipsilateral acetabulum or pelvis is termed as floating hip injury. These injuries are very rare, only to be found 1 in 10,000 as well as there is lack of literature support regarding proper treatment protocol. Here we are going to present a case of fracture of neck of left femur along with fracture of left acetabulum in a 45 years old male undergone road traffic accident.
Selective Disruption Of Tlr2-Myd88 Interaction Inhibits Inflammation And Attenuates Alzheimer\u27S Pathology
Induction of TLR2 activation depends on its association with the adapter protein MyD88. We have found that TLR2 and MyD88 levels are elevated in the hippocampus and cortex of patients with Alzheimer\u27s disease (AD) and in a 5XFAD mouse model of AD. Since there is no specific inhibitor of TLR2, to target induced TLR2 from a therapeutic angle, we engineered a peptide corresponding to the TLR2-interacting domain of MyD88 (TIDM) that binds to the BB loop of only TLR2, and not other TLRs. Interestingly, WT TIDM peptide inhibited microglial activation induced by fibrillar Aβ1-42 and lipoteichoic acid, but not 1-methyl-4-phenylpyridinium, dsRNA, bacterial lipopolysaccharide, flagellin, or CpG DNA. After intranasal administration, WT TIDM peptide reached the hippocampus, reduced hippocampal glial activation, lowered Aβ burden, attenuated neuronal apoptosis, and improved memory and learning in 5XFAD mice. However, WT TIDM peptide was not effective in 5XFAD mice lacking TLR2. In addition to its effects in 5XFAD mice, WT TIDM peptide also suppressed the disease process in mice with experimental allergic encephalomyelitis and collagen-induced arthritis. Therefore, selective targeting of the activated status of 1 component of the innate immune system by WT TIDM peptide may be beneficial in AD as well as other disorders in which TLR2/MyD88 signaling plays a role in disease pathogenesis
Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease.
Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility