144 research outputs found

    Mathematical analysis of the equivalent impedance at the harmonic frequency for the proposed aircraft power system

    Get PDF
    The proposals for the `More Electric Aircraft' place a significant, increased demand on the electrical power distribution system. To increase safety and reduce aircraft maintenance times on the ground, there is a greater need to quickly identify and locate electrical faults within the electrical distribution system. The work presented in this study provides the mathematical basis for the use of power system harmonic impedance measurement for identifying and locating faults within power cables. The method is passive - that is, it does not require the injection of any test signals - and can potentially be embedded into a centralised equipment controller to provide intelligent, real time diagnostics. The method monitors the harmonic line-line self-impedance at strategic points in the distribution system; this is obtained by measuring load voltage and current. Faults can be identified and located within a few fundamental cycles, and therefore provides a `backup protection' system which does not require measurement of the line current. It also can provide details of the fault location and could therefore be a significant aid to aircraft maintenance. This study derives the theoretical basis of the scheme and provides simulation results for a proposed aircraft power system to demonstrate the validity of this approach to detect and locate faults within the system

    Benchmark Test Calculation of a Four-Nucleon Bound State

    Get PDF
    In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure

    Measurement of the Decay Asymmetry Parameters in Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode ΛcΣ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Observation of the Ξc+\Xi_c^+ Charmed Baryon Decays to Σ+Kπ+\Sigma^+ K^-\pi^+, Σ+Kˉ0\Sigma^+ \bar{K}^{*0}, and ΛKπ+π+\Lambda K^-\pi^+\pi^+

    Full text link
    We have observed two new decay modes of the charmed baryon Ξc+\Xi_c^+ into Σ+Kπ+\Sigma^+ K^-\pi^+ and Σ+Kˉ0\Sigma^+ \bar{K}^{*0} using data collected with the CLEO II detector. We also present the first measurement of the branching fraction for the previously observed decay mode Ξc+ΛKπ+π+\Xi_c^+\to\Lambda K^-\pi^+\pi^+. The branching fractions for these three modes relative to Ξc+Ξπ+π+\Xi_c^+\to\Xi^-\pi^+\pi^+ are measured to be 1.18±0.26±0.171.18 \pm 0.26 \pm 0.17, 0.92±0.27±0.140.92 \pm 0.27 \pm 0.14, and 0.58±0.16±0.070.58 \pm 0.16 \pm 0.07, respectively.Comment: 12 page uuencoded postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Rapid detection of identity-by-descent tracts for mega-scale datasets

    Get PDF
    The ability to identify segments of genomes identical-by-descent (IBD) is a part of standard workflows in both statistical and population genetics. However, traditional methods for finding local IBD across all pairs of individuals scale poorly leading to a lack of adoption in very large-scale datasets. Here, we present iLASH, an algorithm based on similarity detection techniques that shows equal or improved accuracy in simulations compared to current leading methods and speeds up analysis by several orders of magnitude on genomic datasets, making IBD estimation tractable for millions of individuals. We apply iLASH to the PAGE dataset of ~52,000 multi-ethnic participants, including several founder populations with elevated IBD sharing, identifying IBD segments in ~3 minutes per chromosome compared to over 6 days for a state-of-the-art algorithm. iLASH enables efficient analysis of very large-scale datasets, as we demonstrate by computing IBD across the UK Biobank (~500,000 individuals), detecting 12.9 billion pairwise connections
    corecore