4 research outputs found

    Seasonal streamflow forecast in the Tocantins river basin, Brazil : an evaluation of ecmwf-seas5 with multiple conceptual hydrological models

    Get PDF
    The assessment of seasonal streamflow forecasting is essential for appropriate water resource management. A suitable seasonal forecasting system requires the evaluation of both numerical weather prediction (NWP) and hydrological models to represent the atmospheric and hydrological processes and conditions in a specific region. In this paper, we evaluated the ECMWF-SEAS5 precipitation product with four hydrological models to represent seasonal streamflow forecasts performed at hydropower plants in the Legal Amazon region. The adopted models included GR4J, HYMOD, HBV, and SMAP, which were calibrated on a daily scale for the period from 2014 to 2019 and validated for the period from 2005 to 2013. The seasonal streamflow forecasts were obtained for the period from 2017 to 2019 by considering a daily scale streamflow simulation comprising an ensemble with 51 members of forecasts, starting on the first day of every month up to 7 months ahead. For each forecast, the corresponding monthly streamflow time series was estimated. A post-processing procedure based on the adjustment of an autoregressive model for the residuals was applied to correct the bias of seasonal streamflow forecasts. Hence, for the calibration and validation period, the results show that the HBV model provides better results to represent the hydrological conditions at each hydropower plant, presenting NSE and NSElog values greater than 0.8 and 0.9, respectively, during the calibration stage. However, the SMAP model achieves a better performance with NSE values of up to 0.5 for the raw forecasts. In addition, the bias correction displayed a significant improvement in the forecasts for all hydrological models, specifically for the representation of streamflow during dry periods, significantly reducing the variability of the residuals

    Comparative evaluation of five hydrological models in a large-scale and tropical river basin

    Get PDF
    Hydrological modeling is an important tool for water resources management, providing a feasible solution to represent the main hydrological processes and predict future streamflow regimes. The literature presents a set of hydrological models commonly used to represent the rainfallrunoff process in watersheds with different meteorological and geomorphological characteristics. The response of such models could differ significantly for a single precipitation event, given the uncertainties associated with the input data, parameters, and model structure. In this way, a correct hydrological representation of a watershed should include the evaluation of different hydrological models. This study explores the use and performance of five hydrological models to represent daily streamflow regimes at six hydropower plants located in the Tocantins river basin (Brazil). The adopted models include the GR4J, HYMOD, HBV, SMAP, and MGB-IPH. The evaluation of each model was elaborated considering the calibration (2014–2019) and validation period (2005–2010) using observed data of precipitation and climatological variables. Deterministic metrics and statistical tests were used to measure the performance of each model. For the calibration stage, results show that all models achieved a satisfactory performance with NSE values greater than 0.6. For the validation stage, only the MGB-IPH model present a good performance with NSE values greater than 0.7. A bias correction procedure were applied to correct the simulated data of conceptual models. However, the statistical tests exposed that only the MGB-IPH model could preserve the main statistical properties of the observed data. Thus, this study discusses and presents some limitations of the lumped model to represent daily streamflows in large-scale river basins (>50,000 km²)

    Installation of deflector in Colider Dam to minimize the percentual of total dissolved gases

    No full text
    ABSTRACT During voluntary or involuntary spills, the total dissolved gas (TDG) may increase with potential of causing gas bubble disease (GBD) in affected fish. Bubbles entrained during spill events in Colider are transported by plunging jets to deep, high pressure, regions in the tailrace where dissolution is enhanced increasing TDG concentrations. The most common alternative to minimize TDG supersaturation downstream of hydropower dams is to install deflectors on the spillway face. In order to reduce TDG levels downstream of the Colider's spillway, Copel retrofitted the four spillway bays with deflectors, finalizing the construction in November 2021. The design of the deflectors were assisted with two studies. The first study comprised the development of a physical model in 1:60 scale, and other study was a numerical model based on the open-source toolbox OpenFoam

    Advancing Medium-Range Streamflow Forecasting for Large Hydropower Reservoirs in Brazil by Means of Continental-Scale Hydrological Modeling

    No full text
    Streamflow forecasts from continental to global scale hydrological models have gained attention, but their performance against operational forecasts at local to regional scales must be evaluated. This study assesses the skill of medium-range, weekly streamflow forecasts for 147 large Brazilian hydropower plants (HPPs) and compares their performance with forecasts issued operationally by the National Electric System Operator (ONS). A continental-scale hydrological model was forced with ECMWF medium-range forecasts, and outputs were corrected using quantile mapping (QM) and autoregressive model approaches. By using both corrections, the percentage of HPPs with skillful forecasts against climatology and persistence for 1–7 days ahead increased substantially for low to moderate (9% to 56%) and high (72% to 94%) flows, while using only the QM correction allowed positive skill mainly for low to moderate flows and for 8–15 days ahead (29% to 64%). Compared with the ONS, the corrected continental-scale forecasts issued for the first week exhibited equal or better performance in 60% of the HPPs, especially for the North and Southeast subsystems, the DJF and MAM months, and for HPPs with less installed capacity. The findings suggest that using simple corrections on streamflow forecasts issued by continental-scale models can result in competitive forecasts even for regional-scale applications
    corecore