196 research outputs found

    Chemical and Biological Activity of Triterpene Saponins from Medicago Species

    Get PDF
    Naturally occurring saponins are a large group of triterpene and steroid glycosides characterized by several biological and pharmacological properties. The Medicago genus represents a valuable source of saponins which have been extensively investigated. This review summarizes the chemical features of saponins from Medicago species and their biological activity, with particular attention to their antimicrobial, insecticidal, allelopathic and cytotoxic effects. Influence of saponins on animal metabolism is also reported

    Unraveling the response of plant cells to cytotoxic saponins: role of metallothionein and nitric oxide

    Get PDF
    A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soilborne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Necrosis Factor (TNF)α, the interleukin (IL)-6 and the Nuclear Transcription FactorκB (NFκB), has been highlighted in animal cells. By contrast, information concerning the response of plant cells to saponins and the related signal transduction pathways is almost missing. To date, there are only a few common features which link plant and animal cells in their response to saponins, such as the early burst in ROS and NO production and the induction of metallothioneins (MTs), small cysteine-rich, metal-binding proteins. This aspect is discussed in the present paper in view of the recent hypothesis that MTs and NO are part of a novel signal transduction pathway participating in the cell response to oxidative stress

    CYP72A67 catalyses a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis

    Get PDF
    In the Medicago genus, triterpenic saponins are bioactive secondary metabolites constitutively synthesized in the aerial and subterranean parts of plants via the isoprenoid pathway. Exploitation of saponins as pharmaceutics, agrochemicals and in the food and cosmetic industries has raised interest in identifying the enzymes involved in their synthesis. We have identified a cytochrome P450 (CYP72A67) involved in hemolytic sapogenin biosynthesis by a reverse genetic TILLING approach in a Medicago truncatula ethylmethanesulfonate (EMS) mutagenized collection. Genetic and biochemical analyses, mutant complementation, and expression of the gene in a microsome yeast system showed that CYP72A67 is responsible for hydroxylation at the C-2 position downstreamof oleanolic acid synthesis. The affinity of CYP72A67 for substrates with different substitutions at multiple carbon positions was investigated in the same in vitro yeast system, and in relation to two other CYP450s (CYP72A68) responsible for the production of medicagenic acid, the main sapogenin in M. truncatula leaves and roots. Full sib mutant and wild-type plants were compared for their sapogenin profile, expression patterns of the genes involved in sapogenin synthesis, and response to inoculation with Sinorhizobium meliloti. The results obtained allowed us to revise the hemolytic sapogenin pathway in M. truncatula and contribute to highlighting the tissue specificities (leaves/roots) of sapogenin synthesis

    La chimica del genere Iperico

    No full text
    • …
    corecore