27 research outputs found

    Vitamin D as Modulator of Drug Concentrations: A Study on Two Italian Cohorts of People Living with HIV Administered with Efavirenz

    Get PDF
    To date, vitamin D seems to have a significant role in affecting the prevention and immunomodulation in COVID-19 disease. Nevertheless, it is important to highlight that this pro-hormone has other several activities, such as affecting drug concentrations, since it regulates the expression of cytochrome P450 (CYP) genes. Efavirenz (EFV) pharmacokinetics is influenced by CYPs, but no data are available in the literature concerning the association among vitamin D levels, seasonality (which affects vitamin D concentrations) and EFV plasma levels. For this reason, the aim of this study was to evaluate the effect of 25-hydroxy vitamin D (25(OH)D3) levels on EFV plasma concentrations in different seasons. We quantified 25(OH)D3 by using chemiluminescence immunoassay, whereas EFV plasma concentrations were quantified with the HPLC–PDA method. A total of 316 patients were enrolled in Turin and Rome. Overall, 25(OH)D3levels resulted in being inversely correlated with EFV concentrations. Some patients with EFV levels higher than 4000 ng/mL showed a deficient 25(OH)D3 concentration in Turin and Rome cohorts and together. EFV concentrations were different in patients without vitamin D supplementation, whereas, for vitamin D-administered individuals, no difference in EFV exposure was present. Concerning seasonality, EFV concentrations were associated with 25(OH)D3 deficiency only in winter and in spring, whereas a significant influence was highlighted for 25(OH)D3 stratification for deficient, insufficient and sufficient values in winter, spring and summer. A strong and inverse association between 25(OH)D3and EFV plasma concentrations was suggested. These data suggest that vitamin D is able to affect drug exposure in different seasons; thus, the achievement of the clinical outcome could be improved by also considering this pro-hormone

    Innovative unattended SEM-EDS analysis for asbestos fiber quantification

    No full text
    Scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) is the only affordable analytical technique that can discriminate both morphology and elemental composition of inorganic fibers. SEM-EDS is indeed required to quantify asbestos in confounding natural matrixes (e.g. ophiolites), but is also time-consuming, operator dependent, and strongly relies on the stochastic distribution of the fibers on the filter surface. The balance between analytical time/cost and the method sensibility allows only about 0.5% of the filter to be analyzed, strongly affecting the statistical significance of results. To improve sensitivity and precision and enhance productivity, an unattended quantitative measurement of the asbestos fibers by SEM-EDS is proposed. The method identifies the particle shape first and determines their chemical composition later, saving EDS analytical time. Our approach was tested on four asbestos standards and the relative error on replicated measurements was< 10%. The proposed unattended method quantifies asbestos in natural confounding matrix, also with a very low asbestos content
    corecore