4 research outputs found

    Activation of Dioxygen by Dimethylplatinum(II) Complexes

    No full text
    The ligands RN­(CH<sub>2</sub>-2-C<sub>5</sub>H<sub>4</sub>N)<sub>2</sub> (<b>L1</b>, R = CH<sub>2</sub>CH<sub>2</sub>OH; <b>L2</b>, R = CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH; <b>L3</b>, R = 2-C<sub>6</sub>H<sub>4</sub>OH) have been designed to give dimethylplatinum­(II) complexes that can activate dioxygen in the absence of a protic solvent. The ligands react with [Pt<sub>2</sub>Me<sub>4</sub>(SMe<sub>2</sub>)<sub>2</sub>] to give an equilibrium mixture, with the major constituent being [PtMe<sub>2</sub>(κ<sup>2</sup>-N,N′-<b>L</b>)] (<b>1a</b>, <b>L</b> = <b>L1</b>; <b>1b</b>, <b>L</b> = <b>L2</b>; <b>1c</b>, <b>L</b> = <b>L3</b>). In the absence of air, <b>1a</b> reacts with solvent CH<sub>2</sub>Cl<sub>2</sub> to give [PtMe<sub>2</sub>(CH<sub>2</sub>Cl)­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L1</b>]­Cl, while <b>1c</b> decomposes with loss of methane to give [PtMe­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L3</b>-H)] and then, by reaction with solvent, the binuclear complex [{PtMe­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L3</b>-H)}<sub>2</sub>(μ-H)]­Cl. In the presence of oxygen the complexes <b>1</b> in CH<sub>2</sub>Cl<sub>2</sub> solution react to give [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L</b>)]­Cl, when <b>L</b> = <b>L1</b> or <b>L2</b>, or [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>O</i>-<b>L</b>-H)], when <b>L</b> = <b>L3</b>. The complex [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L2</b>)]Cl decomposed in the presence of air to give the binuclear complex [{PtMe<sub>2</sub>(2-C<sub>5</sub>H<sub>4</sub>NCO<sub>2</sub>)­(μ-OH)}<sub>2</sub>]. The factors influencing reactivity and mechanism in these reactions are elucidated, and the presence of both a free pyridyl donor (push group) and a free hydroxyl (pull group) is suggested to give a synergy for dioxygen activation by dimethylplatinum­(II) complexes

    Activation of Dioxygen by Dimethylplatinum(II) Complexes

    No full text
    The ligands RN­(CH<sub>2</sub>-2-C<sub>5</sub>H<sub>4</sub>N)<sub>2</sub> (<b>L1</b>, R = CH<sub>2</sub>CH<sub>2</sub>OH; <b>L2</b>, R = CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH; <b>L3</b>, R = 2-C<sub>6</sub>H<sub>4</sub>OH) have been designed to give dimethylplatinum­(II) complexes that can activate dioxygen in the absence of a protic solvent. The ligands react with [Pt<sub>2</sub>Me<sub>4</sub>(SMe<sub>2</sub>)<sub>2</sub>] to give an equilibrium mixture, with the major constituent being [PtMe<sub>2</sub>(κ<sup>2</sup>-N,N′-<b>L</b>)] (<b>1a</b>, <b>L</b> = <b>L1</b>; <b>1b</b>, <b>L</b> = <b>L2</b>; <b>1c</b>, <b>L</b> = <b>L3</b>). In the absence of air, <b>1a</b> reacts with solvent CH<sub>2</sub>Cl<sub>2</sub> to give [PtMe<sub>2</sub>(CH<sub>2</sub>Cl)­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L1</b>]­Cl, while <b>1c</b> decomposes with loss of methane to give [PtMe­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L3</b>-H)] and then, by reaction with solvent, the binuclear complex [{PtMe­(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L3</b>-H)}<sub>2</sub>(μ-H)]­Cl. In the presence of oxygen the complexes <b>1</b> in CH<sub>2</sub>Cl<sub>2</sub> solution react to give [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L</b>)]­Cl, when <b>L</b> = <b>L1</b> or <b>L2</b>, or [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>O</i>-<b>L</b>-H)], when <b>L</b> = <b>L3</b>. The complex [Pt­(OH)­Me<sub>2</sub>(κ<sup>3</sup>-<i>N</i>,<i>N</i>′,<i>N</i>″-<b>L2</b>)]Cl decomposed in the presence of air to give the binuclear complex [{PtMe<sub>2</sub>(2-C<sub>5</sub>H<sub>4</sub>NCO<sub>2</sub>)­(μ-OH)}<sub>2</sub>]. The factors influencing reactivity and mechanism in these reactions are elucidated, and the presence of both a free pyridyl donor (push group) and a free hydroxyl (pull group) is suggested to give a synergy for dioxygen activation by dimethylplatinum­(II) complexes

    A Bridging Peroxide Complex of Platinum(IV)

    No full text
    The photolysis of the allylplatinum­(IV) complex [PtBr­(C<sub>3</sub>H<sub>5</sub>)­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)], <b>1</b>, bipy = 2,2′-bipyridine, in air yielded [{PtBr­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)}<sub>2</sub>(μ-O<sub>2</sub>)], <b>2</b>, the first diplatinum­(IV) complex containing a single bridging peroxide ligand. The PtO–OPt bond distance in <b>2</b> is 1.481(3) Å. Complex <b>2</b> is thought to be formed by homolysis of the allyl-platinum bond of <b>1</b>, followed by reaction of the platinum­(III) intermediate [PtBr­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)] with oxygen

    A Bridging Peroxide Complex of Platinum(IV)

    No full text
    The photolysis of the allylplatinum­(IV) complex [PtBr­(C<sub>3</sub>H<sub>5</sub>)­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)], <b>1</b>, bipy = 2,2′-bipyridine, in air yielded [{PtBr­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)}<sub>2</sub>(μ-O<sub>2</sub>)], <b>2</b>, the first diplatinum­(IV) complex containing a single bridging peroxide ligand. The PtO–OPt bond distance in <b>2</b> is 1.481(3) Å. Complex <b>2</b> is thought to be formed by homolysis of the allyl-platinum bond of <b>1</b>, followed by reaction of the platinum­(III) intermediate [PtBr­(4-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>­(bipy)] with oxygen
    corecore