289 research outputs found

    Coherent Excitonic Coupling in an Asymmetric Double InGaAs Quantum Well Arises from Many-Body Effects

    Full text link
    We study an asymmetric double InGaAs quantum well using optical two-dimensional coherent spectroscopy. The collection of zero-quantum, one-quantum, and two-quantum two-dimensional spectra provides a unique and comprehensive picture of the double well coherent optical response. Coherent and incoherent contributions to the coupling between the two quantum well excitons are clearly separated. An excellent agreement with density matrix calculations reveals that coherent interwell coupling originates from many-body interactions

    Direct imaging of surface plasmon polariton dispersion in gold and silver thin films

    Get PDF
    We image the dispersion of surface plasmon polaritons in gold and silver thin films of 30 and 50 nm thickness, using angle-resolved white light spectroscopy in the Kretschmann geometry. Calibrated dispersion curves are obtained over a wavelength range spanning from 550 to 900 nm. We obtain good qualitative agreement with calculated dispersion curves that take into account the thickness of the thin film

    Hidden Silicon-Vacancy Centers in Diamond

    Get PDF
    We characterize a high-density sample of negatively charged silicon-vacancy (SiV−^-) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of \ce{SiV^-} centers that is not typically observed in photoluminescence, and which exhibits significant spectral inhomogeneity and extended electronic T2T_2 times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices

    Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector

    Full text link
    Improving the temporal resolution of single photon detectors has an impact on many applications, such as increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared. As the detection mechanism in SNSPDs occurs on picosecond time scales, SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps. We reduce this value to 2.7±\pm0.2 ps at 400 nm and 4.6±\pm0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.Comment: 25 pages, 9 figure

    Surgical and medical second trimester abortion in South Africa: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high percentage of abortions performed in South Africa are in the second trimester. However, little research focuses on women's experiences seeking second trimester abortion or the efficacy and safety of these services.</p> <p>The objectives are to document clinical and acceptability outcomes of second trimester medical and surgical abortion as performed at public hospitals in the Western Cape Province.</p> <p>Methods</p> <p>We performed a cross-sectional study of women undergoing abortion at 12.1-20.9 weeks at five hospitals in Western Cape Province, South Africa in 2008. Two hundred and twenty women underwent D&E with misoprostol cervical priming, and 84 underwent induction with misoprostol alone. Information was obtained about the procedure and immediate complications, and women were interviewed after recovery.</p> <p>Results</p> <p>Median gestational age at abortion was earlier for D&E clients compared to induction (16.0 weeks vs. 18.1 weeks, p < 0.001). D&E clients reported shorter intervals between first clinic visit and abortion (median 17 vs. 30 days, p < 0.001). D&E was more effective than induction (99.5% vs. 50.0% of cases completed on-site without unplanned surgical procedure, p < 0.001). Although immediate complications were similar (43.8% D&E vs. 52.4% induction), all three major complications occurred with induction. Early fetal expulsion occurred in 43.3% of D&E cases. While D&E clients reported higher pain levels and emotional discomfort, most women were satisfied with their experience.</p> <p>Conclusions</p> <p>As currently performed in South Africa, second trimester abortions by D&E were more effective than induction procedures, required shorter hospital stay, had fewer major immediate complications and were associated with shorter delays accessing care. Both services can be improved by implementing evidence-based protocols.</p

    Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3(-/-) mice, but not wildtype mice.

    Get PDF
    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3(-/-) mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3(-/-)) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3(-/-) mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3(-/-) nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3(-/-) phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light

    Contracting outsourced services with collaborative key performance indicators

    Get PDF
    While service outsourcing may benefit from the application of performance‐based contracts (PBCs), the implementation of such contracts is usually challenging. Service performance is often not only dependent on supplier effort but also on the behavior of the buying firm. Existing research on performance‐based contracting provides very limited understanding on how this challenge may be overcome. This article describes a design science research project that develops a novel approach to buyer–supplier contracting, using collaborative key performance indicators (KPIs). Collaborative KPIs evaluate and reward not only the supplier contribution to customer performance but also the customer's behavior to enable this. In this way, performance‐based contracting can also be applied to settings where supplier and customer activities are interdependent, while traditional contracting theories suggest that output controls are not effective under such conditions. In the collaborative KPI contracting process, indicators measure both supplier and customer (buying firm) performance and promote collaboration by being defined through a collaborative process and by focusing on end‐of‐process indicators. The article discusses the original case setting of a telecommunication service provider experiencing critical problems in outsourcing IT services. The initial intervention implementing this contracting approach produced substantial improvements, both in performance and in the relationship between buyer and supplier. Subsequently, the approach was tested and evaluated in two other settings, resulting in a set of actionable propositions on the efficacy of collaborative KPI contracting. Our study demonstrates how defining, monitoring, and incentivizing the performance of specific processes at the buying firm can help alleviate the limitations of traditional performance‐based contracting when the supplier's liability for service performance is difficult to verify

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD
    • 

    corecore