47 research outputs found
Neurite imaging reveals microstructural variations in human cerebral cortical gray matter
We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic resonance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable information regarding cortical microstructure that is related to but complementary to myeloarchitecture
Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter
Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture
Towards HCP-style macaque connectomes: 24-channel 3T multi-array coil, MRI sequences and preprocessing
Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain
Cortical adaptation of the night monkey to a nocturnal niche environment: A comparative non-invasive T1w/T2w myelin study
Night monkeys (Aotus) are the only genus of monkeys within the Simian lineage that successfully occupy a nocturnal environmental niche. Their behavior is supported by their sensory organs\u27 distinctive morphological features; however, little is known about their evolutionary adaptations in sensory regions of the cerebral cortex. Here, we investigate this question by exploring the cortical organization of night monkeys using high-resolution in-vivo brain MRI and comparative cortical-surface T1w/T2w myeloarchitectonic mapping. Our results show that the night monkey cerebral cortex has a qualitatively similar but quantitatively different pattern of cortical myelin compared to the diurnal macaque and marmoset monkeys. T1w/T2w myelin and its gradient allowed us to parcellate high myelin areas, including the middle temporal complex (MT +) and auditory cortex, and a low-myelin area, Brodmann area 7 (BA7) in the three species, despite species differences in cortical convolutions. Relative to the total cortical-surface area, those of MT + and the auditory cortex are significantly larger in night monkeys than diurnal monkeys, whereas area BA7 occupies a similar fraction of the cortical sheet in all three species. We propose that the selective expansion of sensory areas dedicated to visual motion and auditory processing in night monkeys may reflect cortical adaptations to a nocturnal environment
The nonhuman primate neuroimaging and neuroanatomy project
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, ‘ground truth’ validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how “functional connectivity” from fMRI and “tractographic connectivity” from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior
Empirical transmit field bias correction of T1w/T2w myelin maps
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a \u27pseudo-transmit\u27 approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing
© 2020 The Author(s) Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain
Spatial Frequency-Based Analysis of Mean Red Blood Cell Speed in Single Microvessels: Investigation of Microvascular Perfusion in Rat Cerebral Cortex
BACKGROUND: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy). METHODOLOGY/PRINCIPAL FINDINGS: We obtained a mean RBC speed (0.9±0.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec) as compared to the age-matched non-exposed rats (1.2±0.3 sec). The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats. CONCLUSIONS/SIGNIFICANCE: The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method
Developing an e-cigarette tray-based production system during a student exchange program
The subject of the thesis was to develop a design for an e-cigarette tray-based production system during a student exchange program. 13 students from the Technical Department of Windesheim University of Applied Sciences took part in a development project, which was made for TDC Kampen. The thesis was made for the Savonia University of Applied Sciences. The purpose of the thesis was to create a design for a new type of technology and gather thoughts and experiences of doing the project while taking part in a student exchange program.
Windesheim University of Applied Sciences offered a course called Project, which was used for the thesis. The project was done abroad in the Netherlands for a student exchange program. The project started from scratch to only give an idea of a tray-based system for the group of students. In the beginning ideas and solutions were gathered for a couple of weeks which included a guided brainstorm session about the whole production system. The group of 13 students was divided in different areas of the process and this thesis includes a closer view for Quality Control group´s work. The tray-based production system includes multiple products in one tray which goes through the assemby sections. The concept from Festo was used for testing the tray. The product, which was used for tests, contained separated parts. These parts needed to be sorted out and assembled. The Quality Control group made solutions for checking that everything has gone well at each section of the process. Machine vision, resistance checks, weighing and laser sensors were used for controlling the quality of the product.
As a result of this thesis, a combination of each group´s designs with the test results and discussion about working abroad was obtained. Solutions that came up with this project were mostly successful and usable for the process. Because TDC is a machinery provider, options were suggested with the assignment. These options are crucial for TDC, because their customers will decide the investment for building the machine. The results of the project can be used in the future for building a machine. As a result, a discussion about doing the thesis for a student exchange program was obtained, too. Thoughts and experiences could be used for the future students that are willing to write their thesis in the same way.Appendixes are only for the use of the client