139 research outputs found

    Many-body excitations in tunneling current spectra of a few-electron quantum dot

    Full text link
    Inherent asymmetry in the tunneling barriers of few-electron quantum dots induces intrinsically different tunneling currents for forward and reverse source-drain biases in the non-linear transport regime. Here we show that in addition to spin selection rules, overlap matrix elements between many-body states are crucial for the correct description of tunneling transmission through quantum dots at large magnetic fields. Signatures of excited (N-1)-electron states in the transport process through the N-electron system are clearly identified in the measured transconductances. Our analysis clearly confirms the validity of single-electron quantum transport theory in quantum dots.Comment: 5 pages, 2 figure

    Localization and entanglement of two interacting electrons in a quantum-dot molecule

    Full text link
    The localization of two interacting electrons in a coupled-quantum-dots semiconductor structure is demonstrated through numerical calculations of the time evolution of the two-electron wave function including the Coulomb interaction between the electrons. The transition from the ground state to a localized state is induced by an external, time-dependent, uniform electric field. It is found that while an appropriate constant field can localize both electrons in one of the wells, oscillatory fields can induce roughly equal probabilities for both electrons to be localized in either well, generating an interesting type of localized and entangled state. We also show that shifting the field suddenly to an appropriate constant value can maintain in time both types of localization.Comment: 4 pages, 4 figure

    Experimental Phonon Band Structure of Graphene using C12andC^{12} and C^{13}$ Isotopes

    Full text link
    Using very uniform large scale chemical vapor deposition grown graphene transferred onto silicon, we were able to identify 15 distinct Raman lines associated with graphene monolayers. This was possible thanks to a combination of different carbon isotopes and different Raman laser energies and extensive averaging without increasing the laser power. This allowed us to obtain a detailed experimental phonon dispersion relation for many points in the Brillouin zone. We further identified a D+D' peak corresponding to a double phonon process involving both an inter- and intra-valley phonon.Comment: 5 pages, 4 figures, 1 tabl

    Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths

    Full text link
    We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs

    Direct Coulomb and Exchange Interaction in Artificial Atoms

    Full text link
    We determine the contributions from the direct Coulomb and exchange interactions to the total interaction in semiconductor artificial atoms. We tune the relative strengths of the two interactions and measure them as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states.Comment: 4 pages, 5 figure

    Dissociation of vertical semiconductor diatomic artificial molecules

    Get PDF
    We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0 T as a function of interdot distance. Slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2 meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit.Comment: Accepted for publication in Phys. Rev. Let
    • …
    corecore