673 research outputs found
Dynamic Considerations for Control of Closed Life Support Systems
Reliability of closed life support systems depend on their ability to continue supplying the crew's needs during perturbations and equipment failures. The dynamic considerations interact with the basic static design through the sizing of storages, the specification of excess capacities in processors, and the choice of system initial state. A very simple system flow model was used to examine the possibilities for system failures even when there is sufficient storage to buffer the immediate effects of the perturbation. Two control schemes are shown which have different dynamic consequences in response to component failures
Redefining the performing arts archive
This paper investigates representations of performance and the role of the archive. Notions of record and archive are critically investigated, raising questions about applying traditional archival definitions to the performing arts. Defining the nature of performances is at the root of all difficulties regarding their representation. Performances are live events, so for many people the idea of recording them for posterity is inappropriate. The challenge of creating and curating representations of an ephemeral art form are explored and performance-specific concepts of record and archive are posited. An open model of archives, encouraging multiple representations and allowing for creative reuse and reinterpretation to keep the spirit of the performance alive, is envisaged as the future of the performing arts archive
Control and modeling of a CELSS (Controlled Ecological Life Support System)
Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized
Mutation in triangulated categories and rigid Cohen-Macaulay modules
We introduce the notion of mutation of -cluster tilting subcategories in a
triangulated category with Auslander-Reiten-Serre duality. Using this idea, we
are able to obtain the complete classifications of rigid Cohen-Macaulay modules
over certain Veronese subrings.Comment: 52 pages. To appear in Invent. Mat
Automorphism groups of polycyclic-by-finite groups and arithmetic groups
We show that the outer automorphism group of a polycyclic-by-finite group is
an arithmetic group. This result follows from a detailed structural analysis of
the automorphism groups of such groups. We use an extended version of the
theory of the algebraic hull functor initiated by Mostow. We thus make
applicable refined methods from the theory of algebraic and arithmetic groups.
We also construct examples of polycyclic-by-finite groups which have an
automorphism group which does not contain an arithmetic group of finite index.
Finally we discuss applications of our results to the groups of homotopy
self-equivalences of K(\Gamma, 1)-spaces and obtain an extension of
arithmeticity results of Sullivan in rational homotopy theory
Symbolic approach and induction in the Heisenberg group
We associate a homomorphism in the Heisenberg group to each hyperbolic
unimodular automorphism of the free group on two generators. We show that the
first return-time of some flows in "good" sections, are conjugate to
niltranslations, which have the property of being self-induced.Comment: 18 page
Applications of BGP-reflection functors: isomorphisms of cluster algebras
Given a symmetrizable generalized Cartan matrix , for any index , one
can define an automorphism associated with of the field of rational functions of independent indeterminates It is an isomorphism between two cluster algebras associated to the
matrix (see section 4 for precise meaning). When is of finite type,
these isomorphisms behave nicely, they are compatible with the BGP-reflection
functors of cluster categories defined in [Z1, Z2] if we identify the
indecomposable objects in the categories with cluster variables of the
corresponding cluster algebras, and they are also compatible with the
"truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of
preprojective or preinjective modules of hereditary algebras by Dlab-Ringel
[DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we
construct infinitely many cluster variables for cluster algebras of infinite
type and all cluster variables for finite types.Comment: revised versio
- …