146 research outputs found

    A Monte Carlo comparison between template-based and Wiener-filter CMB dipole estimators

    Full text link
    We review and compare two different CMB dipole estimators discussed in the literature, and assess their performances through Monte Carlo simulations. The first method amounts to simple template regression with partial sky data, while the second method is an optimal Wiener filter (or Gibbs sampling) implementation. The main difference between the two methods is that the latter approach takes into account correlations with higher-order CMB temperature fluctuations that arise from non-orthogonal spherical harmonics on an incomplete sky, which for recent CMB data sets (such as Planck) is the dominant source of uncertainty. For an accepted sky fraction of 81% and an angular CMB power spectrum corresponding to the best-fit Planck 2018 Λ\LambdaCDM model, we find that the uncertainty on the recovered dipole amplitude is about six times smaller for the Wiener filter approach than for the template approach, corresponding to 0.5 and 3 μ~\muK, respectively. Similar relative differences are found for the corresponding directional parameters and other sky fractions. We note that the Wiener filter algorithm is generally applicable to any dipole estimation problem on an incomplete sky, as long as a statistical and computationally tractable model is available for the unmasked higher-order fluctuations. The methodology described in this paper forms the numerical basis for the most recent determination of the CMB solar dipole from Planck, as summarized by arXiv:2007.04997.Comment: 8 pages, 10 figures, submitted to A&

    Constraints on the spectral index of polarized synchrotron emission from WMAP and Faraday-corrected S-PASS data

    Full text link
    We constrain the spectral index of polarized synchrotron emission, βs\beta_s, by correlating the recently released 2.3 GHz S-Band Polarization All Sky Survey (S-PASS) data with the 23 GHz 9-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We sub-divide the S-PASS field, which covers the Southern Ecliptic hemisphere, into 15×1515^{\circ}\times 15^{\circ} regions, and estimate the spectral index of polarized synchrotron emission within each region using a simple but robust T-T plot technique. Three different versions of the S-PASS data are considered, corresponding to either no correction for Faraday rotation; Faraday correction based on the rotation measure model presented by the S-PASS team; or Faraday correction based on a rotation measure model presented by Hutschenreuter and En{\ss}lin. We find that the correlation between S-PASS and WMAP is strongest when applying the S-PASS model. Adopting this correction model, we find that the mean spectral index of polarized synchrotron emission gradually steepens from βs2.8\beta_s\approx-2.8 at low Galactic latitudes to βs3.2\beta_s\approx-3.2 at high Galactic latitudes, in good agreement with previously published results. Finally, we consider two special cases defined by the BICEP2 and SPIDER fields, and obtain mean estimates of βBICEP2=3.22±0.06\beta_{BICEP2}=-3.22\pm0.06 and βSPIDER=3.21±0.03\beta_{SPIDER}=-3.21\pm0.03, respectively. Adopting the WMAP 23 GHz sky map bandpass filtered to including angular scales only between 22^{\circ} and 1010^{\circ} as a spatial template, we constrain the root-mean-square synchrotron polarization amplitude to be less than 0.03μK0.03\mu K (0.009μK0.009\mu K) at 90 GHz (150 GHz) for the BICEP2 field, corresponding roughly to a tensor-to-scalar ratio of r0.02r\lesssim0.02 (r0.005r\lesssim0.005), respectively. Very similar constraints are obtained for the SPIDER field.Comment: 14 pages, 13 Figures, to be submitted to A&

    Neurological Features and Enzyme Therapy in Patients With Endocrine and Exocrine Pancreas Dysfunction Due to CEL Mutations

    Get PDF
    OBJECTIVE—To further define clinical features associated with the syndrome of diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl-ester lipase (CEL) gene and to assess the effects of pancreatic enzyme substitution therapy

    Cosmoglobe: Towards end-to-end CMB cosmological parameter estimation without likelihood approximations

    Full text link
    We implement support for a cosmological parameter estimation algorithm as proposed by Racine et al. (2016) in Commander, and quantify its computational efficiency and cost. For a semi-realistic simulation similar to Planck LFI 70 GHz, we find that the computational cost of producing one single sample is about 60 CPU-hours and that the typical Markov chain correlation length is \sim100 samples. The net effective cost per independent sample is \sim6 000 CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours for Planck LFI and WMAP in Cosmoglobe Data Release 1. Thus, although technically possible to run already in its current state, future work should aim to reduce the effective cost per independent sample by at least one order of magnitude to avoid excessive runtimes, for instance through multi-grid preconditioners and/or derivative-based Markov chain sampling schemes. This work demonstrates the computational feasibility of true Bayesian cosmological parameter estimation with end-to-end error propagation for high-precision CMB experiments without likelihood approximations, but it also highlights the need for additional optimizations before it is ready for full production-level analysis.Comment: 10 pages, 8 figures. Submitted to A&

    Cosmoglobe DR1. III. First full-sky model of polarized synchrotron emission from all WMAP and Planck LFI data

    Full text link
    We present the first model of full-sky polarized synchrotron emission that is derived from all WMAP and Planck LFI frequency maps. The basis of this analysis is the set of end-to-end reprocessed Cosmoglobe Data Release 1 sky maps presented in a companion paper, which have significantly lower instrumental systematics than the legacy products from each experiment. We find that the resulting polarized synchrotron amplitude map has an average noise rms of 3.2μK3.2\,\mathrm{\mu K} at 30 GHz and 22^{\circ} FWHM, which is 30% lower than the recently released BeyondPlanck model that included only LFI+WMAP Ka-V data, and 29% lower than the WMAP K-band map alone. The mean BB-to-EE power spectrum ratio is 0.40±0.020.40\pm0.02, with amplitudes consistent with those measured previously by Planck and QUIJOTE. Assuming a power law model for the synchrotron spectral energy distribution, and using the TT--TT plot method, we find a full-sky inverse noise-variance weighted mean of βs=3.07±0.07\beta_{\mathrm{s}}=-3.07\pm0.07 between Cosmoglobe DR1 K-band and 30 GHz, in good agreement with previous estimates. In summary, the novel Cosmoglobe DR1 synchrotron model is both more sensitive and systematically cleaner than similar previous models, and it has a more complete error description that is defined by a set of Monte Carlo posterior samples. We believe that these products are preferable over previous Planck and WMAP products for all synchrotron-related scientific applications, including simulation, forecasting and component separation.Comment: 15 pages, 15 figures, submitted to A&

    BeyondPlanck XII. Cosmological parameter constraints with end-to-end error propagation

    Full text link
    We present cosmological parameter constraints as estimated using the Bayesian BeyondPlanck (BP) analysis framework. This method supports seamless end-to-end error propagation from raw time-ordered data to final cosmological parameters. As a first demonstration of the method, we analyze time-ordered Planck LFI observations, combined with selected external data (WMAP 33-61GHz, Planck HFI DR4 353 and 857GHz, and Haslam 408MHz) in the form of pixelized maps which are used to break critical astrophysical degeneracies. Overall, all results are generally in good agreement with previously reported values from Planck 2018 and WMAP, with the largest relative difference for any parameter of about 1 sigma when considering only temperature multipoles between 29<l<601. In cases where there are differences, we note that the BP results are generally slightly closer to the high-l HFI-dominated Planck 2018 results than previous analyses, suggesting slightly less tension between low and high multipoles. Using low-l polarization information from LFI and WMAP, we find a best-fit value of tau=0.066 +/- 0.013, which is higher than the low value of tau=0.051 +/- 0.006 derived from Planck 2018 and slightly lower than the value of 0.069 +/- 0.011 derived from joint analysis of official LFI and WMAP products. Most importantly, however, we find that the uncertainty derived in the BP processing is about 30% larger than when analyzing the official products, after taking into account the different sky coverage. We argue that this is due to marginalizing over a more complete model of instrumental and astrophysical parameters, and this results in both more reliable and more rigorously defined uncertainties. We find that about 2000 Monte Carlo samples are required to achieve robust convergence for low-resolution CMB covariance matrix with 225 independent modes.Comment: 13 pages, 10 figure

    BeyondPlanck X. Planck LFI frequency maps with sample-based error propagation

    Full text link
    We present Planck LFI frequency sky maps derived within the BeyondPlanck framework. This framework draws samples from a global posterior distribution that includes instrumental, astrophysical and cosmological parameters, and the main product is an entire ensemble of frequency sky map samples. This ensemble allows for computationally convenient end-to-end propagation of low-level instrumental uncertainties into higher-level science products. We show that the two dominant sources of LFI instrumental systematic uncertainties are correlated noise and gain fluctuations, and the products presented here support - for the first time - full Bayesian error propagation for these effects at full angular resolution. We compare our posterior mean maps with traditional frequency maps delivered by the Planck collaboration, and find generally good agreement. The most important quality improvement is due to significantly lower calibration uncertainties in the new processing, as we find a fractional absolute calibration uncertainty at 70 GHz of δg0/g0=5105\delta g_{0}/g_{0} =5 \cdot 10^{-5}, which is nominally 40 times smaller than that reported by Planck 2018. However, the original Planck 2018 estimate has a non-trivial statistical interpretation, and this further illustrates the advantage of the new framework in terms of producing self-consistent and well-defined error estimates of all involved quantities without the need of ad hoc uncertainty contributions. We describe how low-resolution data products, including dense pixel-pixel covariance matrices, may be produced directly from the posterior samples without the need for computationally expensive analytic calculations or simulations. We conclude that posterior-based frequency map sampling provides unique capabilities in terms of low-level systematics modelling and error propagation, and may play an important role for future CMB B-mode experiments. (Abridged.)Comment: 32 pages, 23 figures, data available from https://www.cosmoglobe.uio.no

    BeyondPlanck XI. Bayesian CMB analysis with sample-based end-to-end error propagation

    Full text link
    We present posterior sample-based cosmic microwave background (CMB) constraints from Planck LFI and WMAP observations derived through global end-to-end Bayesian processing. We use these samples to study correlations between CMB, foreground, and instrumental parameters, and we identify a particularly strong degeneracy between CMB temperature fluctuations and free-free emission on intermediate angular scales, which is mitigated through model reduction, masking, and resampling. We compare our posterior-based CMB results with previous Planck products, and find generally good agreement, but with higher noise due to exclusion of HFI data. We find a best-fit CMB dipole amplitude of 3362.7±1.4μK3362.7\pm1.4{\mu}K, in excellent agreement with previous Planck results. The quoted uncertainty is derived directly from the sampled posterior distribution, and does not involve any ad hoc contribution for systematic effects. Similarly, we find a temperature quadrupole amplitude of σ2TT=229±97μK2\sigma^{TT}_2=229\pm97{\mu}K^2, in good agreement with previous results in terms of the amplitude, but the uncertainty is an order of magnitude larger than the diagonal Fisher uncertainty. Relatedly, we find lower evidence for a possible alignment between =2\ell = 2 and =3\ell = 3 than previously reported due to a much larger scatter in the individual quadrupole coefficients, caused both by marginalizing over a more complete set of systematic effects, and by our more conservative analysis mask. For higher multipoles, we find that the angular temperature power spectrum is generally in good agreement with both Planck and WMAP. This is the first time the sample-based asymptotically exact Blackwell-Rao estimator has been successfully established for multipoles up to 600\ell\le600, and it now accounts for the majority of the cosmologically important information. Cosmological parameter constraints are presented in a companion paper. (Abriged)Comment: 26 pages, 24 figures. Submitted to A&A. Part of the BeyondPlanck paper suit

    BeyondPlanck II. CMB map-making through Gibbs sampling

    Full text link
    We present a Gibbs sampling solution to the map-making problem for CMB measurements, building on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps; noise filtering and map binning. Considered as two separate steps, both are computationally much cheaper than solving the combined problem. This provides a huge performance benefit as compared to traditional methods, and allows us for the first time to bring the destriping baseline length to a single sample. We apply the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in the time-ordered data are handled efficiently by filling them with simulated noise as part of the Gibbs process. The Gibbs procedure yields a chain of map samples, from which we may compute the posterior mean as a best-estimate map. The variation in the chain provides information on the correlated residual noise, without need to construct a full noise covariance matrix. However, if only a single maximum-likelihood frequency map estimate is required, we find that traditional conjugate gradient solvers converge much faster than a Gibbs sampler in terms of total number of iterations. The conceptual advantages of the Gibbs sampling approach lies in statistically well-defined error propagation and systematic error correction, and this methodology forms the conceptual basis for the map-making algorithm employed in the BeyondPlanck framework, which implements the first end-to-end Bayesian analysis pipeline for CMB observations.Comment: 11 pages, 10 figures. All BeyondPlanck products and software will be released publicly at http://beyondplanck.science during the online release conference (November 18-20, 2020). Connection details will be made available at the same website. Registration is mandatory for the online tutorial, but optional for the conferenc

    BeyondPlanck VII. Bayesian estimation of gain and absolute calibration for CMB experiments

    Full text link
    We present a Bayesian calibration algorithm for CMB observations as implemented within the global end-to-end BeyondPlanck (BP) framework, and apply this to the Planck Low Frequency Instrument (LFI) data. Following the most recent Planck analysis, we decompose the full time-dependent gain into a sum of three orthogonal components: One absolute calibration term, common to all detectors; one time-independent term that can vary between detectors; and one time-dependent component that is allowed to vary between one-hour pointing periods. Each term is then sampled conditionally on all other parameters in the global signal model through Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as a reference source, while the two relative gain components are sampled using the full sky signal, including the orbital and Solar CMB dipoles, CMB fluctuations, and foreground contributions. We discuss various aspects of the data that influence gain estimation, including the dipole/polarization quadrupole degeneracy and anomalous jumps in the instrumental gain. Comparing our solution to previous pipelines, we find good agreement in general, with relative deviations of -0.84% (-0.67%) for 30 GHz, -0.14% (0.02%) for 44 GHz and -0.69% (-0.08%) for 70 GHz, compared to Planck 2018 (NPIPE). The deviations we find are within expected error bounds, and we attribute them to differences in data usage and general approach between the pipelines. In particular, the BP calibration is performed globally, resulting in better inter-frequency consistency. Additionally, WMAP observations are used actively in the BP analysis, which breaks degeneracies in the Planck data set and results in better agreement with WMAP. Although our presentation and algorithm are currently oriented toward LFI processing, the procedure is fully generalizable to other experiments.Comment: 18 pages, 15 figures. All BeyondPlanck products and software will be released publicly at http://beyondplanck.science during the online release conference (November 18-20, 2020). Connection details will be made available at the same website. Registration is mandatory for the online tutorial, but optional for the conferenc
    corecore