7 research outputs found

    Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard

    Full text link
    This paper is devoted to the quantum chaology of three-dimensional systems. A trace formula is derived for compact polyhedral billiards which tessellate the three-dimensional hyperbolic space of constant negative curvature. The exact trace formula is compared with Gutzwiller's semiclassical periodic-orbit theory in three dimensions, and applied to a tetrahedral billiard being strongly chaotic. Geometric properties as well as the conjugacy classes of the defining group are discussed. The length spectrum and the quantal level spectrum are numerically computed allowing the evaluation of the trace formula as is demonstrated in the case of the spectral staircase N(E), which in turn is successfully applied in a quantization condition.Comment: 32 pages, compressed with gzip / uuencod

    Intermediate statistics in quantum maps

    Full text link
    We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths

    On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds

    Full text link
    Asymptotic laws for mean multiplicities of lengths of closed geodesics in arithmetic hyperbolic three-orbifolds are derived. The sharpest results are obtained for non-compact orbifolds associated with the Bianchi groups SL(2,o) and some congruence subgroups. Similar results hold for cocompact arithmetic quaternion groups, if a conjecture on the number of gaps in their length spectra is true. The results related to the groups above give asymptotic lower bounds for the mean multiplicities in length spectra of arbitrary arithmetic hyperbolic three-orbifolds. The investigation of these multiplicities is motivated by their sensitive effect on the eigenvalue spectrum of the Laplace-Beltrami operator on a hyperbolic orbifold, which may be interpreted as the Hamiltonian of a three-dimensional quantum system being strongly chaotic in the classical limit.Comment: 29 pages, uuencoded ps. Revised version, to appear in NONLINEARIT

    Classical and quantum ergodicity on orbifolds

    Full text link
    We extend to orbifolds classical results on quantum ergodicity due to Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive, first-order self-adjoint elliptic pseudodifferential operator P on a compact orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow of p implies quantum ergodicity for the operator P. We also prove ergodicity of the geodesic flow on a compact Riemannian orbifold of negative sectional curvature.Comment: 14 page

    Anatomy of quantum chaotic eigenstates

    Get PDF
    The eigenfunctions of quantized chaotic systems cannot be described by explicit formulas, even approximate ones. This survey summarizes (selected) analytical approaches used to describe these eigenstates, in the semiclassical limit. The levels of description are macroscopic (one wants to understand the quantum averages of smooth observables), and microscopic (one wants informations on maxima of eigenfunctions, "scars" of periodic orbits, structure of the nodal sets and domains, local correlations), and often focusses on statistical results. Various models of "random wavefunctions" have been introduced to understand these statistical properties, with usually good agreement with the numerical data. We also discuss some specific systems (like arithmetic ones) which depart from these random models.Comment: Corrected typos, added a few references and updated some result
    corecore