4 research outputs found

    Delta-9-tetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states

    No full text
    Chronic or acute exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, has been associated with numerous neuropsychiatric side-effects, including dysregulation of emotional processing and associative memory formation. Clinical and preclinical evidence suggests that the effects of THC are due to the ability to modulate mesolimbic dopamine (DA) activity states in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Nevertheless, the mechanisms by which THC modulates mesolimbic DA function and emotional processing are not well understood. Using an olfactory associative fear memory procedure combined with in vivo neuronal electrophysiology, we examined the effects of direct THC microinfusions targeting the shell region of the NAc (NASh) and examined how THC may modulate the processing of fear-related emotional memory and concomitant activity states of the mesolimbic DA system. We report that intra-NASh THC dose-dependently potentiates the emotional salience of normally subthreshold fear conditioning cues. These effects were dependent upon intra-VTA transmission through GABAergic receptor mechanisms and intra-NASh DAergic transmission. Furthermore, doses of intra-NASh THC that potentiated fear memory salience were found to modulate intra-VTA neuronal network activity by increasing the spontaneous firing and bursting frequency of DAergic neurones whilst decreasing the activity levels of a subpopulation of putative GABAergic VTA neurones. These findings demonstrate that THC can act directly in the NASh to modulate mesolimbic activity states and induce disturbances in emotional salience and memory formation through modulation of VTA DAergic transmission

    Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington's Disease

    No full text
    Neuropsychiatric symptoms, such as avolition, apathy, and anhedonia, precede the onset of debilitating motor symptoms in Huntington's disease (HD), and their development may give insight into early disease progression and treatment. However, the neuronal and circuit mechanisms of premanifest HD pathophysiology are not well-understood. Here, using a transgenic rat model expressing the full-length human mutant HD gene, we find early and profound deficits in reward motivation in the absence of gross motor abnormalities. These deficits are accompanied by significant and progressive dysfunction in corticostriatal processing and communication among brain areas critical for reward-driven behavior. Together, our results define early corticostriatal dysfunction as a possible pathogenic contributor to psychiatric disturbances and may help identify potential pharmacotherapeutic targets for the treatment of HD
    corecore