43 research outputs found

    Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington's disease

    Get PDF
    The circadian disruption seen in patients of Huntington's disease (HD) is recapitulated in the R6/2 mouse model. As the disease progresses, the activity of R6/2 mice increases dramatically during the rest (light) period and decreases during the active (dark) period, eventually leading to a complete disintegration of rest-activity rhythms by the age of ~16 weeks. The suprachiasmatic nucleus controls circadian rhythms by entraining the rest-activity rhythms to the environmental light-dark cycle. Since R6/2 mice can shift their rest-activity rhythms in response to a jet-lag paradigm and also respond positively to bright light therapy (1000 lx), we investigated whether or not a prolonged day length exposure could reduce their daytime activity and improve their behavioural circadian rhythms. We found that a long-day photoperiod (16 h light/8 h dark cycle; 100 lx) significantly improved the survival of R6/2 female mice by 2.4 weeks, compared to mice kept under standard conditions (12 h light/12 h dark cycle). Furthermore, a long-day photoperiod improved the nocturnality of R6/2 female mice. Mice kept under long-day photoperiod also maintained acrophase in activity rhythms (a parameter of rhythmicity strength) in phase with that of WT mice, even if they were symptomatic. By contrast, a short-day photoperiod (8 h light/16 h dark cycle) was deleterious to R6/2 female mice and further reduced the survival by ~1 week. Together, our results support the idea that light therapy may be beneficial for improving circadian dysfunction in HD patients.This research was supported by a grant from CHDIInc

    Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.

    Get PDF
    The R6/2 transgenic mouse model of Huntington's disease (HD) shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks). R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau) of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD

    Changes in circulating microRNA levels can be identified as early as day 8 of pregnancy in cattle

    Get PDF
    <div><p>Poor reproductive performance remains a major issue in the dairy industry, with low conception rates having a significant impact on milk production through extended calving intervals. A major limiting factor is the lack of reliable methods for early pregnancy diagnosis. Identification of animals within a herd that fail to conceive within 3 weeks after insemination would allow early re-insemination and shorten calving intervals. In a previous study, we found an increase in plasma miR-26a levels in Day 16-pregnant relative to non-pregnant heifers, however changes in miRNA levels that early during pregnancy were very small which likely prevented the identification of robust biomarkers. In this study, we extended our analyses to a wider interval during pregnancy (Days 8 to 60, n = 11 heifers) with the rationale that this may facilitate the identification of additional early pregnancy miRNA biomarkers. Using small RNA sequencing we identified a total of 77 miRNAs that were differentially expressed on Day 60 relative to Day 0 of pregnancy. We selected 14 miRNAs for validation by RT-qPCR and confirmed significant differences in the expression of let-7f, let-7c, miR-30c, miR-101, miR-26a, miR-205 and miR-143 between Days 0 and 60. RT-qPCR profiling throughout Days 0, 8, 16 and 60 of pregnancy showed a distinct increase in circulating levels of miR-26a (3.1-fold, P = 0.046) as early as Day 8 of pregnancy. In summary, in contrast to earlier stages of pregnancy (≤ Day 24), marked differences in the levels of multiple miRNAs can be detected in circulation by Day 60 in cattle. Retrospective analyses showed miR-26a levels to be increased in circulation as early as Day 8, sooner than previously reported in any species, suggesting a biological role for this miRNA in the very early events of pregnancy.</p></div

    Targeting early changes in the synovial microenvironment:a new class of immunomodulatory therapy?

    Get PDF
    Objectives: Controlled immune responses rely on integrated crosstalk between cells and their microenvironment. We investigated whether targeting proinflammatory signals from the extracellular matrix that persist during pathological inflammation provides a viable strategy to treat rheumatoid arthritis (RA). Methods: Monoclonal antibodies recognising the fibrinogen-like globe (FBG) of tenascin-C were generated by phage display. Clones that neutralised FBG activation of toll-like receptor 4 (TLR4), without impacting pathogenic TLR4 activation, were epitope mapped by crystallography. Antibodies stained synovial biopsies of patients at different stages of RA development. Antibody efficacy in preventing RA synovial cell cytokine release, and in modulating collagen-induced arthritis in rats, was assessed. Results: Tenascin-C is expressed early in the development of RA, even before disease diagnosis, with higher levels in the joints of people with synovitis who eventually developed RA than in people whose synovitis spontaneously resolved. Anti-FBG antibodies inhibited cytokine release by RA synovial cells and prevented disease progression and tissue destruction during collagen-induced arthritis. Conclusions: Early changes in the synovial microenvironment contribute to RA progression; blocking proinflammatory signals from the matrix can ameliorate experimental arthritis. These data highlight a new drug class that could offer early, disease-specific immune modulation in RA, without engendering global immune suppression

    Representative double plotted actograms from mice undergoing phase-advance and phase-delay.

    No full text
    <p>WT (A, B) and R6/2 (C, D) mice were exposed to either phase-advance (A and C) or phase-delay (B and D). Shaded regions represent dark phase of LD cycle. Lines were drawn to plot onsets of activity for each mouse (as shown for representative mice in A-D). Lines from all mice are shown superimposed in E and F.</p

    Acrophase and light/dark ratios in the shift/reversal experiment.

    No full text
    <p>Acrophase (A and B) and light/dark ratios (C and D) for WT (open columns) and R6/2 (filled columns) mice are shown following both phase-advance (A, C) and phase-delay (B, D). Data in A and B are means ± SEM of the acrophase in each week of the experiment. Data in C and D are the light/dark ratios from the second 7 days of each cycle. * = p<0.05, ** = p<0.01, *** = p<0.001.</p

    Disintegration of daily rhythm of activity in R6/2 mice.

    No full text
    <p>Double-plotted actograms from representative WT (A) and R6/2 (B) mice measured under LD conditions (12 h:12 h). Light/dark activity ratio (C), onset of activity (D), and acrophase (E) were averaged across 7 days. Open symbols are WT mice, filled symbols are R6/2 mice. Data are means ± SEM. *** = p<0.001.</p
    corecore