3 research outputs found

    Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata

    No full text
    Abstract Background The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. Results An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. Conclusions Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors

    Genomic and cytogenetic analysis of the Ceratitis capitata temperature-sensitive lethal region.

    No full text
    Genetic sexing strains (GSS) are an important tool in support of sterile insect technique (SIT) applications against insect pests and disease vectors. The yet unknown temperature-sensitive lethal (tsl) gene and the recently identified white pupae (wp) gene have been used as selectable markers in the most successful GSS developed so far, the Ceratitis capitata (medfly) VIENNA 8 GSS. The molecular identification of the tsl gene may open the way for its use as a marker for the development of GSS in other insect pests and disease vectors of SIT importance. Prior studies have already shown that the tsl gene is located on the right arm of chromosome 5, between the wp and Zw loci (tsl genomic region). In the present study, we used genomic, transcriptomic, bioinformatic, and cytogenetic approaches to characterize and analyze this genomic region in wild-type and tsl mutant medfly strains. Our results suggested the presence of 561 genes, with 322 of them carrying SNPs and/or insertion-deletion (indel) mutations in the tsl genomic region. Furthermore, comparative transcriptomic analysis indicated the presence of 32 differentially expressed genes, and bioinformatic analysis revealed the presence of 33 orthologs with a described heat-sensitive phenotype of Drosophila melanogaster in this region. These data can be used in functional genetic studies to identify the tsl gene(s) and the causal mutation(s) responsible for the temperature-sensitive lethal phenotype in medfly, and potentially additional genes causing a similar phenotype
    corecore