35 research outputs found

    Metastability of Logit Dynamics for Coordination Games

    Full text link
    Logit Dynamics [Blume, Games and Economic Behavior, 1993] are randomized best response dynamics for strategic games: at every time step a player is selected uniformly at random and she chooses a new strategy according to a probability distribution biased toward strategies promising higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of the game, whose unique stationary distribution is the long-term equilibrium concept for the game. However, when the mixing time of the chain is large (e.g., exponential in the number of players), the stationary distribution loses its appeal as equilibrium concept, and the transient phase of the Markov chain becomes important. It can happen that the chain is "metastable", i.e., on a time-scale shorter than the mixing time, it stays close to some probability distribution over the state space, while in a time-scale multiple of the mixing time it jumps from one distribution to another. In this paper we give a quantitative definition of "metastable probability distributions" for a Markov chain and we study the metastability of the logit dynamics for some classes of coordination games. We first consider a pure nn-player coordination game that highlights the distinctive features of our metastability notion based on distributions. Then, we study coordination games on the clique without a risk-dominant strategy (which are equivalent to the well-known Glauber dynamics for the Curie-Weiss model) and coordination games on a ring (both with and without risk-dominant strategy)

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Full text link
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise beta describes the behavior of a complex system whose individual components act selfishly and keep responding according to some partial ("noisy") knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by the inverse of the parameter beta. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that, for potential games, the mixing time is upper and lower bounded by an exponential in the inverse of the noise and in the maximum potential difference. Instead, for games with dominant strategies, the mixing time cannot grow arbitrarily with the inverse of the noise. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, a class of games that have been previously studied in Physics and, more recently, in Computer Science in the context of diffusion of new technologies. We give evidence that the mixing time of the logit dynamics for these games strongly depends on the structure of the underlying graph. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in the inverse of noise. Moreover, we consider two specific and popular network topologies, the clique and the ring. For games played on a clique we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in the inverse of the noise and in the maximum potential difference, while for games played on a ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Get PDF
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise β describes the behavior of a complex system whose individual components act selfishly according to some partial (“noisy”) knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by parameter β. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that for potential games the mixing time is bounded by an exponential in β and in the maximum potential difference. Instead, for games with dominant strategies the mixing time cannot grow arbitrarily with β. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, often used for modeling the diffusion of new technologies. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in β. Moreover, we consider two specific and popular network topologies, the clique and the ring. For the clique, we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in β and in the maximum potential difference, while for the ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter

    Audio-Vestibular Alterations During the Phases of the Menstrual Cycle in Patients with Cochlear Implant

    Get PDF
    Background: The female hormones fluctuations in woman’s life play a dominant role in homeostasis of the body and can influence the psycho-neurological processes in different body systems. In particular, in the auditory system seems that hormonal alterations during the menstrual cycle can compromise the homeostasis of the labyrinthine fluids altering balance and/or hearing. Aims/Objectives: Our study aims to verify if hormonal changes during different menstrual phases may have an influence, in females with cochlear implants, on the trend of auditory and vestibular performances. Materials and methods: Tonal, speech audiometry, vestibular examination and a measure of cochlear implants electrodes impedances were realized in the follicular and luteal phases on a group of eight women who are at a fertile age, affected by profound sensorineural form of hearing loss and carrying a monolateral cochlear implant. Results: Audio-vestibular alterations, as well as, an increase of impedance electrodes are reported in the luteal phase. Conclusions: Our work suggests that audio-vestibular alterations are related to the different phases of the menstrual cycle with consequent variation also of the performances of the implant. It is very important to keep in mind this aspect to avoid negative results during rehabilitation

    Mixing Time and Stationary Expected Social Welfare of Logit Dynamics

    No full text
    We study logit dynamics (Blume in Games Econ. Behav. 5:387-424, 1993) for strategic games. This dynamics works as follows: at every stage of the game a player is selected uniformly at random and she plays according to a noisy best-response where the noise level is tuned by a parameter β. Such a dynamics defines a family of ergodic Markov chains, indexed by β, over the set of strategy profiles. We believe that the stationary distribution of these Markov chains gives a meaningful description of the long-term behavior for systems whose agents are not completely rational.Our aim is twofold: On the one hand, we are interested in evaluating the performance of the game at equilibrium, i.e. the expected social welfare when the strategy profiles are random according to the stationary distribution. On the other hand, we want to estimate how long it takes, for a system starting at an arbitrary profile and running the logit dynamics, to get close to its stationary distribution; i.e., the mixing time of the chain.In this paper we study the stationary expected social welfare for the 3-player CK game (Christodoulou and Koutsoupias in Proc. of the 37th Annual ACM Symposium on Theory of Computing (STOC'05), pp. 67-73, ACM, New York, 2005), for 2-player coordination games, and for two simple n-player games. For all these games, we also give almost tight upper and lower bounds on the mixing time of logit dynamics. Our results show two different behaviors: in some games the mixing time depends exponentially on β, while for other games it can be upper bounded by a function independent of β. © 2013 Springer Science+Business Media New York

    Metastability of Logit Dynamics for Coordination Games

    No full text
    Logit Dynamics [Blume, Games and Economic Behavior, 1993] is a randomized best response dynamics for strategic games: at every time step a player is selected uniformly at random and she chooses a new strategy according to a probability distribution biased toward strategies promising higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of the game, whose unique stationary distribution is the long-term equilibrium concept for the game. However, when the mixing time of the chain is large (e.g., exponential in the number of players), the stationary distribution loses its appeal as equilibrium concept, and the transient phase of the Markov chain becomes important. In several cases it happens that on a time-scale shorter than mixing time the chain is “quasistationary”, meaning that it stays close to some small set of the state space, while in a time-scale multiple of the mixing time it jumps from one quasi-stationaryconfiguration to another; this phenomenon is usually called “metastability”. In this paper we give a quantitative definition of “metastable probability distributions ” for a Markov chain and we study the metastability of the Logit dynamics for some classes of coordination games. In particular, we study no-risk-dominant coordination games on the clique (which is equivalent to the well-known Glauber dynamics for the Ising model) and coordination games on a ring (both the risk-dominant and norisk-dominant case). We also describe a simple “artificial” game that highlights the distinctive features of our metastability notion based on distributions

    Middle ear involvement in children with chronic rheumatoid juvenile arthritis

    No full text
    corecore