59 research outputs found
Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations
The mechanical properties of a polymeric network containing both crosslinks
and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics
simulation. We coarse-grain at the level of chain segments connecting
consecutive nodes (cross- or sliplinks), with particular attention to the
Gaussian statistics of the network. Affine displacement of nodes is not
imposed: their displacement as well as sliding of monomers through sliplinks is
governed by force balances. The simulation results of stress in uniaxial
extension and the full stress tensor in simple shear including the (non-zero)
second normal stress difference are presented for monodisperse chains with up
to 18 entanglements between two crosslinks. The cases of two different force
laws of the subchains (Gaussian chains and chains with finite extensibility)
for two different numbers of monomers in a subchain (no = 50 and no = 100) are
examined. It is shown that the additivity assumption of slip- and crosslink
contribution holds for sufficiently long chains with two or more entanglements,
and that it can be used to construct the strain response of a network of
infinitely long chains. An important consequence is that the contribution of
sliplinks to the small-strain shear modulus is about ⅔ of the
contribution of a crosslink
Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology
The effects of entanglement in solutions and melts of unknotted ring polymers
have been addressed by several theoretical and numerical studies. The system
properties have been typically profiled as a function of ring contour length at
fixed solution density. Here, we use a different approach to investigate
numerically the equilibrium and kinetic properties of solutions of model ring
polymers. Specifically, the ring contour length is maintained fixed, while the
interplay of inter- and intra-chain entanglement is modulated by varying both
solution density (from infinite dilution up to \approx 40 % volume occupancy)
and ring topology (by considering unknotted and trefoil-knotted chains). The
equilibrium metric properties of rings with either topology are found to be
only weakly affected by the increase of solution density. Even at the highest
density, the average ring size, shape anisotropy and length of the knotted
region differ at most by 40% from those of isolated rings. Conversely, kinetics
are strongly affected by the degree of inter-chain entanglement: for both
unknots and trefoils the characteristic times of ring size relaxation,
reorientation and diffusion change by one order of magnitude across the
considered range of concentrations. Yet, significant topology-dependent
differences in kinetics are observed only for very dilute solutions (much below
the ring overlap threshold). For knotted rings, the slowest kinetic process is
found to correspond to the diffusion of the knotted region along the ring
backbone.Comment: 17 pages, 11 figure
i-Rheo: Measuring the materials' linear viscoelastic properties “in a step”!
A new analytical technique for determining a materials' linear viscoelastic properties from a simple step-strain measurement is reported. The technique avoids the need for idealisation of real measurements. The technique involves evaluating the Fourier transforms of raw experimental data describing both the time-dependent stress and strain functions. A comparison with conventional linear oscillatory measurements for a diverse range of complex materials is made and the technique is shown to be superior to existing linear oscillatory measurements in all cases
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Arrested spinodal decomposition in polymer brush collapsing in poor solvent
We study the Brownian dynamics of flexible and semiflexible polymer chains
densely grafted on a flat substrate, upon rapid quenching of the system when
the quality of solvent becomes poor and chains attempt collapse into a globular
state. The collapse process of such a polymer brush differs from individual
chains, both in its kinetics and its structural morphology. We find that the
resulting collapsed brush does not form a homogeneous dense layer, in spite of
all chain monomers equally attracting each other via a model Lennard-Jones
potential. Instead, a very distinct inhomogeneous density distribution in the
plane forms, with a characteristic length scale dependent on the quenching
depth (or equivalently, the strength of monomer attraction) and the geometric
parameters of the brush. This structure is identical to the
spinodal-decomposition structure, however, due to the grafting constraint we
find no subsequent coarsening: the established random bundling with
characteristic periodicity remains as the apparently equilibrium structure. We
compare this finding with a recent field-theoretical model of bundling in a
semiflexible polymer brush.This work was funded by the Osk. Huttunen Foundation (Finland) and the Cambridge Theory of Condensed Matter Grant from EPSRC. Simulations were performed using the Darwin supercomputer of the University of Cambridge High Performance Computing Service provided by Dell Inc. using Strategic Research Infrastructure funding from the Higher Education Funding Council for England.This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/ma501985r
- …