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Abstract

We study the Brownian dynamics of flexible and semiflexible polymer chains densely grafted

on a flat substrate, upon rapid quenching of the system when the quality of solvent becomes

poor and chains attempt collapse into a globular state. The collapse process of such a polymer

brush differs from individual chains, both in its kinetics and its structural morphology. We

find that the resulting collapsed brush does not form a homogeneous dense layer, in spite of all

chain monomers equally attracting each other via a model Lennard-Jones potential. Instead,

a very distinct inhomogeneous density distribution in the plane forms, with a characteristic

length scale dependent on the quenching depth (or equivalently, the strength of monomer at-

traction) and the geometric parameters of the brush. This structure is identical to the spinodal-

decomposition structure, however, due to the grafting constraint we find no subsequent coars-

ening: the established random bundling with characteristic periodicity remains as the appar-

ently equilibrium structure. We compare this finding with a recent field-theoretical model of

bundling in a semiflexible polymer brush.
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Introduction

The theoretical problem of polymer chain collapse in poor solvents has received much attention

over the past decades, both from analytic1–5 and numerical approaches.6,7 This generic collapse,

often called the “coil-globule transition”, is well-understood as a local version of the polymer

demixing Flory has originally formulated for polymer solutions.8 The coil-globule transition is

closely associated with the initial stages of protein folding.9 Collapse takes place as a result of

effective pair interaction between chain monomers becoming attractive, e.g. due to changing sol-

vent quality. Recent studies of the collapse dynamics have shown that it is a non-trivial kinetic

process, with competing interactions leading to inhomogeneous intermediate structures forming

and persisting on the way to the final globular state.10–12

In this work, we look at the collective behaviour of several chains in a confined configuration

known as “polymer brush”.13,14 By definition, a polymer brush is a layer of polymers attached

with one end to a surface at a sufficiently high grafting density (i.e. a sufficiently close distance

between individual polymer chains). In practice, the attachment can take place via a covalent

bond, a specific ligand, physical adsorption or self-assembly. In our simulations, the chains have

their first monomer fixed on a flat surface, resulting in a constant grafting density throughout the

simulation. Chains themselves can vary in length, composition and individual properties, from

very primitive ideal chains to complex models incorporating block copolymers, electric charge

and hydrodynamics. The subclass of charged (polyelectrolyte) brushes is even more interesting in

biological context. There are numerous examples of polymer brushes in biological systems such as

protein micelles, planar brushes of polysaccharides, cylindrical polymer brushes in microtubules

and neurofilaments. In terms of useful physical, chemical and biomedical applications, brushes

can be used to stabilise colloids, lubricate surfaces, deliver drugs by biodegradable micelles, in

DNA microarrays for diagnostic analysis of mutations and to reduce friction in artificial joints, to

name but a few.15 Here we study a simple, planar brush of self-avoiding bead-and-spring polymer

chains without additional electrostatic interactions or hydrodynamics, which makes the analysis

tractable and comparable with well-established theories – but we also examine the case of chains

2



with a long persistence length as a crude attempt to account for polyelectrolyte stiffening. The

simple picture of polymer brushes may serve as the basis for models in diverse interfacial sys-

tems in biophysics and polymer science, such as polymeric surfactants, stabilised suspensions of

colloid particles, and many structures formed by block copolymers. Note that there are classical

papers in the literature, describing molecular dynamics of polymer brush and its evolution with

grafting density,16 as well as experimentally determine its characteristics.17,18 They generally find

agreement in the key aspects with the classical theory of polymer brushes.19–21 However, in this

paper our interest is different: instead of looking at the structure of an extended polymer brush in

good solvent, we investigate the case of poor solvent when the effective attractive (non-specific)

interaction between segments causes chain collapse into a dense globular state.

We carry out coarse-grained Brownian dynamics simulations of a collection of chains uni-

formly grafted to a flat repulsive surface, to find their equilibrium swollen conformation and then

follow their behavior after instant quenching. We use the parameters setup of Rosa and Everaers22

within the Large Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package.23

The initial structure of the polymer chains was configured to be linear, and the first step was to

equilibrate the linear brush into a constricted coil structure in good solvent. Due to the high den-

sity of grafting, in a good solvent their individual conformation is quite stretched out, and we find

a good agreement with classical results on the parabolic density profile.20 The deviations from the

parabolic profile, which have been shown to become progressively important as the length of the

polymers or the grafting density decrease,24 have not been significant in our case of grafted flexible

chains – however, we found that the semiflexible chains deviate from the parabolic density very

significantly. After equilibration, the solvent conditions were instantly switched to poor solvent,

resulting in chains collapsed onto their flat substrate surface. Here we find an unexpected effect of

spinodal decomposition in the plane of collapsing brush, and study it quantitatively through local

monomer density profile, potential energy and characteristic length-scale measurements, as well

as the kinetics of collapse. In all cases, we compared the behaviour of flexible and semiflexible

polymer brushes upon collapse over time.
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(a) (b) (c)

Figure 1: (a) The initial configuration of our simulation, illustrating the grafting structure and
density. In this case, the grafting on the x-y plane was on a uniform square lattice with the spacing
a = 3σ (b) The equilibrated brush in a good solvent. (c) Comparison of the initial structure and
the equilibrated coil in good solvent.

Again, there is an important body of work on the structure of a brush collapsed in poor sol-

vent;25–27 for instance, it is well-established that the collapse transition, which leads to phase

separation in the bulk, is smeared out for the grafted layer and does not correspond to a true phase

transition – however, the authors have not examined the lateral structure of the collapsed brush.

The recent theory of Benetatos et al.28 considered stiff and semiflexible chains in a brush con-

figuration, and predicted a bundling instability when an attractive interaction between monomers

exceeds a critical value. In their work, Benetatos et al. found that there is a competition between

permanent grafting favouring a homogeneous state of the polymer brush and the non-localised

attraction, which tends to induce in-plane collapse of the aligned polymers, giving rise to an insta-

bility of the homogeneous phase to a bundled state. In the bundled state, the density in the plane is

modulated by a length scale that depends on the strength of the attractive interaction.

Brownian dynamics simulations allowed us to follow the density evolution of brushes over

time, as it evolves from the equilibrium parabolic profile in the swollen brush to the densely packed

layer on the surface. The characteristic length scale of bundled regions in the collapsed brush

appear to agree with the theoretical prediction of the square root dependence of this length scale

on the attractive potential well depth.28
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Simulation of polymer brush

The model used for numerical simulations in this work is based on the bead-spring model described

in the molecular dynamics context by Kremer and Grest29 and Plimpton.30 We take an individual

polymer chain composed of connected monomeric units consisting of N = 30 monomers, and

900 of these chains formed a brush on a 30× 30 square lattice as shown in fig. 1. Interactions

between monomers are described by the standard potentials: FENE for connected pairs of particles,

bending elasticity by the angle formed between two consecutive bonds, and the Lennard-Jones (LJ)

potential representing a longer-range pair interaction between any two particles.

Model parameters were taken similar to the ones described earlier;12 each monomer has an

effective diameter of σ in reduced units and the values of FENE bond potential constants were

used as in Kremer and Grest.29 We shall work at essentially the canonical ensemble with a fixed

temperature of the thermostat set at kBT = 1, which means that if we choose the characteristic

energy scale in real units to be 2.5 kJ/mol, then the thermostat temperature will be 300C. The

actual temperature of the system measured from the average kinetic energy per degree of freedom

will fluctuate around this value, controlled by the damping term and the random force term in the

Langevin equation (which, in turn, are related by the fluctuation-dissipation theorem). In reduced

(Lennard-Jones: LJ) units all our energy scales will be measured in units of this constant thermostat

parameter kBT . The particularly important parameter measuring the local bending modulus of the

polymer chain, Kθ (giving the chain persistence length lp = σKθ/kBT ) was set to give lp = σ for

a case of flexible chains, and to lp = 8σ for a brush of semiflexible chains. The integration time

step was chosen to be ∆tint = 0.01τ , where τ = σ
√

m/kBT is the reduced (LJ) time.22,29 Taking

appropriate values of σ and mass for a typical monomer, we obtain the estimate of τ ≈ 1.96ps.

Hence, with 107 time-steps of this coarse-grained simulation we are able to follow the dynamics

of a polymer brush for ∼ 196 nanoseconds.

In good solvent the LJ potential was set to zero at rcut-off = 21/6σ , retaining only the soft repul-

sion between monomers representing the excluded-volume interaction of such a polymer chain (in

some literature this is called the Weeks-Chandler-Anderson excluded volume potential). In order
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to simulate poor solvent conditions when there is an effective attraction between monomers, the

cut-off value was set to rcut-off = 3σ , while retaining the same value of LJ ε . The corresponding

depth of the attractive pair potential well represents the depth of quenching: instead of changing

the temperature as one is more familiar with in mean-field and scaling theories, we keep the tem-

perature of the Brownian bath constant and change the strength of effective monomer attraction.

The initial geometry of the set up play an important role in the physics of the simulated brush

collapse, and therefore the parameters used to build a brush had to be chosen carefully. It is

clear that with a very sparse grafting when the area per chain a2 is greater than the area of chain

gyration in good solvent R2
g ∼ σ2N6/5, the polymer chains are in the “mushroom” regime14,20 and

their collapse in poor solvent will proceed individually, forming condensed “droplets” of floor area

∼ σ2N2/3 � a2 which are assured not to interact with their neighbors. We expect the interesting

physics to emerge when the two length scales are comparable and so the two competing effects28

could produce a modulated structure. This happens when the area per chain is approximately

equal to the area of the the collapsed droplet, that is, grafting the chains a distance a ≈ σN1/3

apart. For N = 30 this gives the spacing a ≈ 3σ . When the chain length is so great that for a given

grafting density the thickness of the collapsed dense polymer layer is large, we might still find a

modulation in the x-y plane of the free surface of the collapsed brush, however, this regime required

a simulation much bigger than we could afford if a meaningful statistics were to be acquired. The

final choice, guided by the above considerations, was a box in the Cartesian frame, in which the

brush was created using a 30×30 square lattice at z = 0, with lattice spacing of a = 3σ . 900 chains

of length N = 30 had their first particle bound to this lattice (immobilized) in the z = 0 plane. The

rest of this structureless plane was given a repulsive Lennard-Jones potential to keep the rest of the

chains restricted to the positive-z direction.

In order to confirm that the N = 30 chains of a polymer brush were initially equilibrated in a

good solvent, we simulated a single grafted chain of N = 1000 particles, relaxing from an initially

straight configuration to a random self-avoiding coil. This equilibrium state was confirmed visu-

ally and by density measurements for the standard random coil configuration. It is important that
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commonly used measurements of potential energy relaxation as a function of time are not suit-

able for judging the equilibration, because the potential energy of a chain quickly reaches a very

stable plateau for a ‘crumbled’ extended chain conformation, which then takes a very long time

to equilibrate into a proper self-avoiding coil, maximizing the entropy of its configuration. After

the equilibrium of a long chain was confirmed after 10 million timesteps, we used this time for a

polymer brush with much shorter chains on a planar surface to assure ourselves that it was properly

equilibrated.

Once an equilibrium of grafted chains was achieved and verified by density measurement, an

attractive LJ potential between all particles was switched on (replicating the poor solvent condi-

tions) and the coils collapsed into globular state. However, in the brush with constrained grafted

particles, the group of chains was unable to reach its preferred shape (minimizing the surface area

of contact with the solvent). This frustration introduced by the grafting constraints is the underly-

ing reason for our findings.

Among other parameters, we monitored the collapse by the average areal density of monomers

ρ(z). In order to calculate ρ(z) we first need to determine the number of monomers at a given

height, n(z), which is constrained by the condition that an integral
∫

∞

0 n(z)dz is equal to the total

number of particles, which in our simulations is 900× 30 = 27000. We then normalize n(z) by

the maximum number of particles of size σ that could fit in a plane (at any given z), which in

our case of the 30× 30 grid with the spacing of 3σ is 8100. The function ρ(z) = n(z)/8100 is

the area density in our simulation, discussed and plotted in Fig. 5 below. We calculated ρ(z) at

each time step. The entire box was divided into parallel bins (in xy-plane) of thickness σ along

the z-direction. The total number of particles in each bin, determined by the center placement,

forms a one-dimensional array n(z). This gives a constant value of n(z) = 900 for z ≤ 30 for the

initial straight configuration of chains. For averaging of equilibrium structures, each z-bin was

averaged over 5 brush configurations separated by 500,000 timesteps. According to the classical

theory of expanded brush,20 in a good solvent the density ρ(z) will have a parabolic profile, which

we accurately record in our simulations (see fig. 5 below). In the dynamic process of collapse
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we has to present an instantaneous ρ(z) without time-averaging, resulting in a certain noise in

corresponding profiles.

Finally, on notation: in the results and discussion below we use the shorthand [ts] for timesteps,

[kts] to represent ‘kilo time steps’ (i.e. 1000 time steps of simulation), and correspondingly [Mts]

stands for ‘Mega’ or million time steps.

Collapse of polymer brush

In order to simulate the collapse of a polymer brush, the initial linear chains have to be fully equili-

brated in conditions that imitate good solvent, which will result in a realistic simulation of collapse

– if the chains are not equilibrated in such a way, the collapse will happen by rolling of straight

segments into a globular structure, which is not a realistic response. After equilibration, the solvent

conditions are rapidly changed to poor – a process known as quenching, which we reproduce by

creating the attractive pair potential between all monomers and controlling its depth ε – allowing

the coils to collapse in an entangled, irregular manner. This more realistic collapse results in an un-

expected highly inhomogeneous structure in the plane, fully resembling spinodal decomposition

morphology. These structures were highly stable at equilibrium and their structural properties,

such as the characteristic length scale of the formed collapsed structures, were dependent on the

strength (the well-depth ε) of the attractive potential, that is, the depth of quench of the system. We

followed the same principle as with verifying equilibration in an extended brush in good solvent.

We first recorded the potential energy relaxation of the system until it reached an apparent plateau

– and then waited for another 26 million time-steps for further equilibration (it was only 10 Mts

needed for the N = 1000 chain to equilibrate into a coil). In contrast to the annealed case of poly-

mer coils, here we have no structural criteria to verify equilibration; in fact, one might argue that

in the dense collapsed mesh of mutually attracting chains the full equilibrium is unattainable on

any reasonable time scales; although the system is not a glass, the internal mobility must be very

low). However, we were certain that neither the morphological features of spinodal decomposition
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patterns, nor the average density profiles have not changed between ∼ 50 kts and 26 Mts. Hence

we declare these states equilibrium with our accuracy.

As the polymer brush collapses, we see the initially homogeneous distribution of monomers in

the xy-plane breaking down and a phenomenon that appears indistinguishable from the classical

spinodal decomposition taking place. This clustering of polymer chains depends on the strength of

the attractive potential between individual chains of the brush, characterised by a non-dimensional

depth of the LJ attractive potetial well ε , in kBT units. In flexible chains, we found distinctive

coarsening and large clusters at small potential well depths, and increasingly smaller-sized clusters

of polymers as the potential well depth increases, as shown in fig. 2. Although the difference

in characteristic length scale of the structure, ξ , is apparent between different panels, it was not

easy for us to determine it quantitatively. Due to the relatively small area of the xy-map, the

Fourier transformation methods (so useful in classical studies of spinodal decomposition, in Cahn-

Hilliard model and beyond) were not possible in our case. In the end we have resorted to manually

extracting many independent measurements of ‘thickness’ of the dense-polymer regions (a distance

perpendicular to both interfaces) and averaging the result. The final panel in fig. 2 presents such an

average characteristic length scale, as a function of increasing strength of the attractive LJ potential,

which is reasonably fitted to a square-root scaling dependence ξ ∼ 1/(ε − ε∗)2.

For semiflexible brushes with persistence length lp = 8σ , there is a similar trend in morpho-

logical properties as a function of attractive potential strength ε – as the potential increases, the

number of chain clusters also increases and these become smaller in size, as demonstrated in fig. 3.

The similar quantitative analysis of the average characteristic length scale of the frozen spinodal

pattern follows a similar scaling dependence ξ ∼ 1/(ε − ε∗)2 (acknowledging the large errors of

its calculation and only a few data points available for the fitting). Comparing with the flexible

brush (lp = 1σ ) the values of this length are uniformly lower by a constant factor of ∼ 1.33 in this

case of semiflexible chains.

Figure 4 shows the ‘early-time’ relaxation of the potential energy of each brush after the in-

stantaneous quench at t = 0 (the increasing quench depth is labelled on the plots). The potential
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Figure 2: Morphological properties of the collapsed flexible polymer brushes (lp = 1) at varying
attractive potential well-depths, ε , labelled on each panel. The plot of the average characteristic
length scale of the spinodal pattern is fitted to the square-root dependence: ξ ∼ 1/(ε − ε∗)2.

energy experiences a sudden drop at short times, when large gains could be made by all attracting

particles coming closer together; the amplitude of this drop is obviously proportional to the depth

of the attractive LJ potential well. However, the time of this initial drop is not significantly depen-

dent on the variation of quench depth. After the system becomes compact (the density plots after

t ≈ 10 kts do not have much of the further variation, fig. 5 below), the approach to equilibrium

becomes very slow. This is due to structural changes in chain configurations in the dense state. All

structures were equilibrated for 26 million time steps and for the most of this long time the total

potential energy of the 900 chains in our brushes did not vary at all.

Figure 5 presents the density profiles of our brushes in different conditions and at different

times of their collapse, as always, comparing the flexible and the semiflexible chain cases. We

calculate the local monomer density ρ(z) in the same way as done by Murat and Grest.16 Note

that the maximum value our density reaches in the fully-collapsed state (closest to the surface,
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Figure 3: Morphological properties of the collapsed semiflexible polymer brushes (lp = 8) at vary-
ing attractive potential well-depths, ε , labelled on each panel. The plot of the average characteristic
length scale of the spinodal pattern is fitted to the square-root dependence: ξ ∼ 1/(ε − ε∗)2.

after a long time allowed to self-compact) is ρmax ≈ 0.74, which is the fcc dense packing density

of monodisperse spheres. The reason that we obtain an essentially 3-dimensional result for what

might seem to be a 2-dimensional (areal) density is because our calculation is fully in 3D and the

assignment of a particle to a given z-bin is successful if its center occupies a 3D slice of thickness

σ .

The first interesting result is for the flexible brush in good solvent: the density ρ(z) is parabolic

to a good approximation, as the fitted line in fig. 5(a) indicates – therefore our results are in full

compliance with the classical theory of brushes,19,20,31 according to which ρ(z)=w−1(A(h)−Bz2)

and the effective potential acting on the chains is U(z) = −wρ(z), with w the excluded volume

parameter and h the brush height. This is in agreement with early MD simulations16 and neutron-

scattering experiments.17,18 This also confirms that our initial brush is equilibrated in good solvent.

In contrast, the brush of semiflexible chains in fig. 5(b) is much more extended and its density does
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Figure 4: Short-time evolution of the potential energy of polymer brushes as a function of time. (a)
Flexible chains, lp = 1; (b) semiflexible chains, lp = 8. Different curves correspond to increasing
values of effective attraction measured by ε , labelled on plots.

not fit a parabolic function in any approximation.

The second fact one can notice from the density ρ(z) evolution on brush collapse is the fact

that there is no further change in density past a time t ∼ 50 kts (compared with the t = 26 Mts in

the plots). In fact, it may not be easy to distinguish the data symbols corresponding to these two

very long times in fig. 5, precisely because there is no discernable change in the density – in spite

of the very long time the simulation was allowed to equilibrate after the chains collapsed. Note

that this time of ‘full collapse’ is much longer than the time of relaxation of the potential energy of

the brush, cf. fig. 4 – one has to assume that the further re-arrangements of the microstructure in

the dense system are mainly entropy-driven.

It is evident from both the potential energy relaxation, as well as the density profile evolution,

that the time that it takes for a chain to collapse is a function of the attractive potential strength.

We declared the polymer brush ‘collapsed’ (and recorded the corresponding time it took) when the

density profile ρ(z) have reached the shape that have no longer evolved with time (cf. fig. 5). Hence

we found that the stronger the attractive potential (deeper the quench), the faster this collapse takes

place: see fig. 6. The lines in the plot are a guide to an eye fitted dependence of τ ∼ 1/ε . At the

same time, the semiflexible brush (more extended in good solvent) is much slower to reach the
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Figure 5: The evolution of density ρ(z), calculated as the average number of monomers in a
given xy-plane, at various time-points of brush collapse at ε = 6: (a) flexible chains, lp = 1; (b)
semiflexible chains, lp = 8. The initial density profile in good solvent (‘equilibrium coil’) for
flexible shows a good approximation to the classical parabolic profile,20 fitted with a solid blue
line; the corresponding semiflexible chains are much more extended near the grafting plane and
only show the expected drop in density from about half-way along the brush height.

fully collapsed state on the substrate.
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Figure 6: Time to collapse as a function of potential well depth for flexible and semiflexible poly-
mer brushes. The lines are guide to an eye fits with an inverse function τ = A/ε .

Discussion

There is one example in the literature, where a competition between the attractive forces between

all chain segments and the constraint of remaining uniformly grafted on a flat surface has been stud-

ied theoretically.28 The direct analogy with our simulation work is difficult to establish, because
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the authors there have only consider the so-called directed polymers – the chains never allowed

to fold back upon themselves by either the constraint of a fixed height of the brush (the second

plane fixing the ends of the chains as well), or by having a very high persistence length. Both of

these limits have only marginal correspondence to our system, which is collapsing into a highly

folded dense melt (our semiflexible chain case might be the closest to what has been studied in.28

Nevertheless, the fundamental physics of a spatial instability developing in the xy-plane in order to

resolve the mentioned competition has to be the same in both works, which is why we reflect on

this comparison.

In essence, the final answer of that theoretical study28 is a prediction that an initially homo-

geneous areal density ρ(x,y) will develop an instability when the following condition is first met

(written in an approximate simplified form, in the limit of the range of the effective attractive LJ

interaction less than
√

L3/lp):

ε
σ2

a2 ≥ q4

q2 −3+4e−q2/2 − e−q2 , (1)

where a is the separation of the grafting points in the plane (i.e. 1/a2 is the grafting density),

and the non-dimensional parameter q = k
√

L3/lp is proportional to the Fourier wave vector of

the polymer density in the xy-plane. The minimum of the universal function in the left-hand side

of (1) is at q0 ≈ 2 (when the function is ∼ 10). This mean that, on increasing the quenching

depth measured by ε , the spinodal-decomposition instability will first occur with a length scale

ξ0 ∼ 1/q0 ≈
√

L3/lp when the strength of attraction potential ε exceeds a certain critical value

(this critical point is ε∗ ∼ 10(a/σ)2 in28). The further increase of ε will produce the initially

quadratic increase of the wave vector q, hence the characteristic length scale we are measuring in

figs. 2 and 3 should decrease as ξ ∼ 1/(ε − ε∗)2 (which is qualitatively what we saw in figs. 2,3).

As mentioned earlier, we cannot hope to achieve any quantitative agreement with the theory:28

in our system the chains can fold into a densely packed state where the extended-chain approx-

imations made to carry out their calculations most certainly fail. Besides, we only examine the
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final state of the arrested spinodal decomposition – not the initial point of instability as done in

ref.28 Nevertheless, we do see that the characteristic length scale of the inhomogeneous structure

ξ varies qualitatively the same with increasing the quench depth, and also that ξ is smaller in a

system with a larger persistence length (fig. 3) which is what the analysis of equation (1) shows.

We remind the reader that the dependence on the quenching depth is also in full correspondence

with the physics of spinodal decomposition away from the critical point.

To emphasize, we found a spinodal decomposition in a polymer brush after its instantaneous

quenching into the poor-solvent conditions. The inhomogeniety forms due to inter-chain attrac-

tion of equilibrated chains competing against the constraint imposed by the grafting density. This

constraint prevents the neighbouring chains to fully overlap, which would allow particles to in-

teract fully and non-preferentially with the closest neighbouring chains, thus forming a uniform

dense layer. The corresponding morphology is arrested (does not coarsen as the classical spinodal

decomposition) because the grafting of chains prevents large-scale diffusion. Because these col-

lapsed brushes form a dense and highly inhomogenous thin layer on the surface, this leads to a

critical yet undescribed phenomenon which may have important physical implications in surface

and interface science and technology.

We feel that these physical ideas and considerations should initiate a more focused theoretical

and simulation effort to establish the laws and the morphology of polymer brushes collapsed in

poor solvent – now that we know their density in the plane can be highly non-uniform. We also

believe that this analysis can be used to finely tune polymer brushes for experimental purposes to

regulate the surface properties of materials. We can see that in some cases one would have to be

careful with selecting chain length and grafting to avoid this inhomogeneity – while in other cases

it would be a highly desired characteristic of thin films. Such an arrested spinodal decomposition of

polymer brushes might be used for design of functional (smart) surfaces in a variety of applications,

from solar-cell and wetting-control technology to directed drug-delivery systems, biosensors and

polymer brush modified membranes for protein analysis.
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