2 research outputs found

    Localized Surface Plasmon Resonance of Metallic Nanoparticles--Optical Property Characterization for Rational Applications

    Get PDF
    在光的激发下金属纳米结构中的自由电子能够发生群体性的振荡,进而产生表面等离激元(SPP)。发生等离激元共振时,金属纳米结构会将光束缚在表面,并在表面产生极强的电场增强。表面等离激元有两种类型:一类具有传播的特点,其表面等离激元能够在表面传播,称之为propagatingSPP;另一类不具有传播性,共振局域在一个很小的金属结构中,称之为localizedSPP,即局域表面等离激元共振(LSPR)。金属纳米颗粒就具有很强的表面等离激元共振的(LSPR)性质,使其对光产生增强的吸收和增强的散射,并表现出相关的热、光电场增强和热电子等效应。近年,随着纳米科技的发展,金属纳米粒子的LSPR效应已经成为一...The collective oscillation of free electrons in metal nanostructures excited with light is called surface plasmon polaritons (SPP). The light will be confined to a small area on the surface under the resonance condition (SPR), thus a giant enhancement in the electric field will be produced. There are two kinds of surface plasmon polaritons (SPP): one is propagating plasmon polaritons (PSPP), which...学位:理学博士院系专业:化学化工学院_物理化学(含化学物理)学号:2052010015366

    Manufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager

    Full text link
    The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads. The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes. The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper. The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown.MIRI for JWS
    corecore