16 research outputs found

    Metabolic regulation via enzyme filamentation

    No full text
    Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease

    The interplay between Myc and CTP synthase in Drosophila

    No full text
    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn

    FlyORF-TaDa allows rapid generation of new lines for in vivo cell-type specific profiling of protein-DNA interactions in Drosophila melanogaster

    Get PDF
    Targeted DamID (TaDa) is an increasingly popular method of generating cell-type specific DNA binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye colour. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly-reproducible DamID binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin modifying proteins within the Drosophila genome

    FlyORF-TaDa allows rapid generation of new lines for in vivo cell-type specific profiling of protein-DNA interactions in Drosophila melanogaster

    Get PDF
    Targeted DamID (TaDa) is an increasingly popular method of generating cell-type specific DNA binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye color. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly-reproducible DamID binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin modifying proteins within the Drosophila 26 genome

    Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila

    No full text
    Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here we uncover a previously unrecognised crosstalk between adult intestinal stem cells in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and intestinal stem cell proliferation following damage. Unexpectedly, reactive oxygen species-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 messenger RNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine–vasculature inter-organ communication programme that is essential to adapt the stem cell response to the proliferative demands of the intestinal epithelium

    Mapping RNA-Chromatin Interactions In Vivo with RNA-DamID

    No full text
    Long-noncoding RNAs (lncRNAs) are emerging as regulators of development and disease. lncRNAs are expressed in exquisitely precise expression patterns in vivo and many interact with chromatin to regulate gene expression. However, the limited sensitivity of RNA-purification techniques has precluded the identification of genomic targets of cell-type specific lncRNAs. RNA-DamID is a powerful new approach to understand the mechanisms by which lncRNAs act in vivo. RNA-DamID is highly sensitive and accurate, and can resolve cell-type-specific chromatin binding patterns without cell isolation. The determinants of RNA-chromatin interactions can be identified with RNA-DamID by analyzing RNA and protein cofactor mutants. Here we describe how to implement RNA-DamID and the design considerations to take into account to accurately identify lncRNA-chromatin interactions in vivo

    Mapping RNA-Chromatin Interactions In Vivo with RNA-DamID.

    No full text
    Long-noncoding RNAs (lncRNAs) are emerging as regulators of development and disease. lncRNAs are expressed in exquisitely precise expression patterns in vivo and many interact with chromatin to regulate gene expression. However, the limited sensitivity of RNA-purification techniques has precluded the identification of genomic targets of cell-type specific lncRNAs. RNA-DamID is a powerful new approach to understand the mechanisms by which lncRNAs act in vivo. RNA-DamID is highly sensitive and accurate, and can resolve cell-type-specific chromatin binding patterns without cell isolation. The determinants of RNA-chromatin interactions can be identified with RNA-DamID by analyzing RNA and protein cofactor mutants. Here we describe how to implement RNA-DamID and the design considerations to take into account to accurately identify lncRNA-chromatin interactions in vivo
    corecore