229 research outputs found

    Cosmological Constraints from the double source plane lens SDSSJ0946+1006

    Get PDF
    We present constraints on the equation of state of dark energy, ww, and the total matter density, ΩM\Omega_{\mathrm{M}}, derived from the double-source-plane strong lens SDSSJ0946+1006, the first cosmological measurement with a galaxy-scale double-source-plane lens. By modelling the primary lens with an elliptical power-law mass distribution, and including perturbative lensing by the first source, we are able to constrain the cosmological scaling factor in this system to be β−1=1.404±0.016\beta^{-1}=1.404 \pm 0.016, which implies ΩM=0.33−0.26+0.33\Omega_{\mathrm{M}}= 0.33_{-0.26}^{+0.33} for a flat Λ\Lambda cold dark matter (Λ\LambdaCDM) cosmology. Combining with a cosmic microwave background prior from Planck, we find ww = −1.17−0.21+0.20-1.17^{+0.20}_{-0.21} assuming a flat wwCDM cosmology. This inference shifts the posterior by 1σ{\sigma} and improves the precision by 30 per cent with respect to Planck alone, and demonstrates the utility of combining simple, galaxy-scale multiple-source-plane lenses with other cosmological probes to improve precision and test for residual systematic biases.Comment: 9 Pages, 7 Figures. Updated version as published in MNRA

    A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. I. Methodology and Results of Pilot Study

    Get PDF
    We present high-quality Keck/LRIS longslit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.0210^7 M_sun) to study the relations between black hole mass (MBH) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and CaII triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hbeta emission line and the host-galaxy free 5100A AGN luminosity. Combining results from spectroscopy and imaging allows us to study four MBH scaling relations: MBH-sigma, MBH-L(sph), MBH-M(sph,*), MBH-M(sph,dyn). We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g. SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the MBH-sigma relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for FeII emission, and the CaHK region, although often swamped by the AGN powerlaw continuum and emission lines, can give results accurate to within a few percent. Third, the MBH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.Comment: 28 pages, 19 figures. Final version, accepted for publication in The Astrophysical Journal (ApJ, 726, 59

    A Window On The Earliest Star Formation: Extreme Photoionization Conditions of a High-Ionization, Low-Metallicity Lensed Galaxy at z~2

    Full text link
    We report new observations of SL2SJ021737-051329, a lens system consisting of a bright arc at z=1.84435, magnified ~17x by a massive galaxy at z=0.65. SL2SJ0217 is a low-mass (M <10^9 M*), low-metallicity (Z~1/20 Z*) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for CIV 1548,1550, HeII 1640, OIII] 1661,1666, SiIII] 1883,1892, and CIII] 1907,1909. (2) Double-peaked LyA emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sightline to the lensed galaxy. The relative emission line strengths can be reproduced with a very high-ionization, low-metallicity starburst with binaries, with the exception of He \ii, which indicates an additional ionization source is needed. We rule out large contributions from AGN and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early Universe.Comment: 28 pages, 16 figures, 8 tables, re-submitted to ApJ, comments welcom

    Cosmic Evolution of Black Holes and Spheroids. IV. The BH Mass - Spheroid Luminosity Relation

    Get PDF
    From high-resolution images of 23 Seyfert-1 galaxies at z=0.36 and z=0.57 obtained with the Near Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total host-galaxy luminosity and spheroid luminosity. Keck spectroscopy is used to estimate black hole mass (M_BH). We study the cosmic evolution of the M_BH-spheroid luminosity (L_sph) relation. In combination with our previous work, totaling 40 Seyfert-1 galaxies, the covered range in BH mass is substantially increased, allowing us to determine for the first time intrinsic scatter and correct evolutionary trends for selection effects. We re-analyze archival HST images of 19 local reverberation-mapped active galaxies to match the procedure adopted at intermediate redshift. Correcting spheroid luminosity for passive luminosity evolution and taking into account selection effects, we determine that at fixed present-day V-band spheroid luminosity, M_BH/L_sph \propto (1+z)^(2.8+/-1.2). When including a sample of 44 quasars out to z=4.5 taken from the literature, with luminosity and BH mass corrected to a self-consistent calibration, we extend the BH mass range to over two orders of magnitude, resulting in M_BH/L_sph \propto (1+z)^(1.4+/-0.2). The intrinsic scatter of the relation, assumed constant with redshift, is 0.3+/-0.1 dex (<0.6 dex at 95% CL). The evolutionary trend suggests that BH growth precedes spheroid assembly. Interestingly, the M_BH-total host-galaxy luminosity relation is apparently non-evolving. It hints at either a more fundamental relation or that the spheroid grows by a redistribution of stars. However, the high-z sample does not follow this relation, indicating that major mergers may play the dominant role in growing spheroids above z~1.Comment: 39 pages, 11 figures. Accepted for publication in the Astrophysical Journa
    • …
    corecore