103 research outputs found

    The effect of coronal splits on the structural stability of bi-condylar tibial plateau fractures: a biomechanical investigation

    Get PDF
    Introduction!#!Surgical treatment of bi-condylar tibial plateau fractures is still challenging due to the complexity of the fracture and the difficult surgical approach. Coronal fracture lines are associated with a high risk of fixation failure. However, previous biomechanical studies and fracture classifications have disregarded coronal fracture lines.!##!Materials and methods!#!This study aimed to develop a clinically relevant fracture model (Fracture C) and compare its mechanical behavior with the traditional Horwitz model (Fracture H). Twelve samples of fourth-generation tibia Sawbones were utilized to realize two fracture models with (Fracture C) or without (Fracture H) a coronal fracture line and both fixed with lateral locking plates. Loading of the tibial plateau was introduced through artificial femur condyles to cyclically load the fracture constructs until failure. Stiffness, fracture gap movements, failure loads as well as relative displacements and rotations of fracture fragments were measured.!##!Results!#!The presence of a coronal fracture line reduced fracture construct stiffness by 43% (p = 0.013) and decreased the failure load by 38% from 593 ± 159 to 368 ± 63 N (p = 0.016). Largest displacements were observed at the medial aspect between the tibial plateau and the tibial shaft in the longitudinal direction. Again, the presence of the coronal fracture line reduced the stability of the fragments and created increased joint incongruities.!##!Conclusions!#!Coronal articular fracture lines substantially affect the mechanical response of tibia implant structures specifically on the medial side. With this in mind, utilizing a clinically relevant fracture model for biomechanical evaluations regarding bi-condylar tibial plateau fractures is strongly recommended

    Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting

    Get PDF
    Background: Common cell based strategies for the treatment of osseous defects require the isolation and expansion of autologous cells. Since this makes such approaches time-consuming and expensive, we developed a novel expedited technology creating gene activated muscle grafts. We have previously shown that large segmental bone defects in rats can be regenerated by implantation of muscle tissue fragments activated by BMP-2 gene transfer. Results: In the present study, we compared the bone healing capacities of such gene activated muscle grafts with bone isografts, mimicking autologous bone grafting, the clinical gold standard for treatment of bone defects in patients. Two of 14 male, syngeneic Fischer 344 rats used for this experiment served as donors for muscle and bone. Muscle tissue was harvested from both hind limbs and incubated with an adenoviral vector carrying the cDNA encoding BMP-2. Bone was harvested from the iliac crest and long bone epiphyses. Bone defects (5 mm) were created in the right femora of 12 rats and were filled with either BMP-2 activated muscle tissue or bone grafts. After eight weeks, femora were evaluated by radiographs, micro-computed tomography (mu CT), and biomechanical testing. In the group receiving BMP-2 activated muscle grafts as well as in the bone-grafting group, 100\% of the bone defects were healed, as documented by radiographs and mu CT-imaging. Bone volume was similar in both groups and biomechanical stability of the two groups was statistically indistinguishable. Conclusions: This study demonstrates that treatment of large bone defects by implantation of BMP-2 gene activated muscle tissue leads to similar bone volume and stability as bone isografts, mimicking autologous bone grafting

    Distal femur fractures: basic science and international perspectives

    Get PDF
    Distal femur fractures are challenging injuries to manage, and complication rates remain high. This article summarizes the international and basic science perspectives regarding distal femoral fractures that were presented at the 2022 Orthopaedic Trauma Association Annual Meeting. We review a number of critical concepts that can be considered to optimize the treatment of these difficult fractures. These include biomechanical considerations for distal femur fixation constructs, emerging treatments to prevent post-traumatic arthritis, both systemic and local biologic treatments to optimize nonunion management, the relative advantages and disadvantages of plate versus nail versus dual-implant constructs, and finally important factors which determine outcomes. A robust understanding of these principles can significantly improve success rates and minimize complications in the treatment of these challenging injuries

    Inter-rater reliability, sensitivity to change and responsiveness of the orthopaedic Wolf-Motor-Function-Test as functional capacity measure before and after rehabilitation in patients with proximal humeral fractures

    Get PDF
    Background: The incidence of proximal humeral fractures (PHF) increased by more than 30% over the last decade, which is accompanied by an increased number of operations. However, the evidence on operative vs. non-operative treatment and post-operative treatments is limited and mostly based on expert opinion. It is mandatory to objectively assess functional capacity to compare different treatments. Clinical tools should be valid, reliable and sensitive to change assessing functional capacity after PHFs. This study aimed to analyse inter-rater reliability of the videotaped Wolf-Motor-Function-Test-Orthopaedic (WMFT-O) and the association between the clinical WMFT-O and the Disability of the Arm, Shoulder and Hand (DASH) and to determine the sensitivity to change of the WMFT-O and the DASH to measure functional capacity before and after rehabilitation in PHF patients. Methods: Fifty-six patients (61.7 ± 14.7 years) after surgical treatment of PHF were assessed using the WMFT-O at two different time points. To determine inter-rater reliability, the videotaped WMFT-O was evaluated through three blinded raters. Inter-rater agreement was determined by Fleiss’ Kappa statistics. Pearson correlation coefficients were calculated to assess the association between the clinical WMFT-O and the video rating as well as the DASH. Sensitivity to change and responsiveness were analysed for the WMFT-O and the DASH in a subsample of forty patients (53.8 ± 1.4 years) who were assessed before and after a three week robotic-assisted training intervention. Results: Inter-rater agreement was indicated by Fleiss’ Kappa values ranging from 0.33–0.66 for functional capacity and from 0.27–0.54 for quality of movement. The correlation between the clinical WMFT-O and the video rating was higher than 0.77. The correlation between the clinical WMFT-O and the DASH was weak. Sensitivity to change was high for the WMFT-O and the DASH and responsiveness was given. In comparison to the DASH, the sensitivity to change of the WMFT-O was higher. Conclusion: The overall results indicate that the WMFT-O is a reliable, sensitive and responsive instrument to measure more objectively functional change over time in rehabilitation after PHF. Furthermore, it has been shown that video assessment is eligible for studies to ensure a full blinding of raters. Trial registration: Clinicaltrials.gov, NCT03100201. Registered on 28 March 2017. The trial was retrospectively registered

    Musculoskeletal Response to Whole-Body Vibration During Fracture Healing in Intact and Ovariectomized Rats

    Get PDF
    This study investigated the effect of vibration on bone healing and muscle in intact and ovariectomized rats. Thirty ovariectomized (at 3 months of age) and 30 intact 5-month old female Sprague-Dawley rats underwent bilateral metaphyseal osteotomy of tibia. Five days later, half of the ovariectomized and of the intact rats were exposed to whole-body vertical vibration (90 Hz, 0.5 mm, 4 × g acceleration) for 15 min twice a day during 30 days. The other animals did not undergo vibration. After decapitation of rats, one tibia was used for computed tomographic, biomechanical, and histological analyses; the other was used for gene expression analyses of alkaline phosphatase (Alp), osteocalcin (Oc), tartrate-resistant acid phosphatase 1, and insulinlike growth factor 1. Serum Alp and Oc were measured. Mitochondrial activity, fiber area and distribution, and capillary densities were analyzed in M. gastrocnemius and M. longissimus. We found that vibration had no effect on body weight and food intake, but it improved cortical and callus densities (97 vs. 99%, 72 vs. 81%), trabecular structure (9 vs. 14 trabecular nodes), blood supply (1.7 vs. 2.1 capillaries/fiber), and oxidative metabolism (17 vs. 23 pmol O2/s/mg) in ovariectomized rats. Vibration generally increased muscle fiber size. Tibia biomechanical properties were diminished after vibration. Oc gene expression was higher in vibrated rats. Serum Alp was increased in ovariectomized rats. In ovariectomized rats, vibration resulted in an earlier bridging; in intact rats, callus bridging occurred later after vibration. The chosen vibration regimen (90 Hz, 0.5 mm, 4 × g acceleration, 15 min twice a day) was effective in improving musculoskeletal tissues in ovariectomized rats but was not optimal for fracture healing

    Austrian Science Fund (FWF): T1141B-Population level variability in orthopedic biomechanics

    No full text
    FWF Hertha Firnberg Fellowship T1141-
    corecore