19 research outputs found

    siRNA–Mediated Methylation of Arabidopsis Telomeres

    Get PDF
    Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA–based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin structure and RNA transcription at chromosome termini in Arabidopsis. Arabidopsis telomeres display features of intermediate heterochromatin that does not extensively spread to subtelomeric regions which encode transcriptionally active genes. We also found telomeric repeat–containing transcripts arising from telomeres and centromeric loci, a portion of which are processed into small interfering RNAs. These telomeric siRNAs contribute to the maintenance of telomeric chromatin through promoting methylation of asymmetric cytosines in telomeric (CCCTAAA)n repeats. The formation of telomeric siRNAs and methylation of telomeres relies on the RNA–dependent DNA methylation pathway. The loss of telomeric DNA methylation in rdr2 mutants is accompanied by only a modest effect on histone heterochromatic marks, indicating that maintenance of telomeric heterochromatin in Arabidopsis is reinforced by several independent mechanisms. In conclusion, this study provides evidence for an siRNA–directed mechanism of chromatin maintenance at telomeres in Arabidopsis

    HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA

    No full text
    To analyze relationships between RNA signals, DNA methylation and chromatin modifications, we performed a genetic screen to recover Arabidopsis mutants defective in RNA-directed transcriptional silencing and methylation of a nopaline synthase promoter–neomycinphosphotransferase II (NOSpro– NPTII) target gene. Mutants were identified by screening for recovery of kanamycin resistance in the presence of an unlinked silencing complex encoding NOSpro double-stranded RNA. One mutant, rts1 (RNA-mediated transcriptional silencing), displayed moderate recovery of NPTII gene expression and partial loss of methylation in the target NOSpro, predominantly at symmetrical C(N)Gs. The RTS1 gene was isolated by positional cloning and found to encode a putative histone deacetylase, HDA6. The more substantial decrease in methylation of symmetrical compared with asymmetrical cytosines in rts1 mutants suggests that HDA6 is dispensable for RNA-directed de novo methylation, which results in intermediate methylation of cytosines in all sequence contexts, but is necessary for reinforcing primarily C(N)G methylation induced by RNA. Because CG methylation in centromeric and rDNA repeats was not reduced in rts1 mutants, HDA6 might be specialized for the RNA- directed pathway of genome modification

    Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis

    No full text
    DRD1 is a SWI/SNF-like protein that cooperates with a plant-specific RNA polymerase, Pol IVb, to facilitate RNA-directed de novo methylation and silencing of homologous DNA. Screens to identify endogenous targets of this pathway in Arabidopsis revealed intergenic regions and plant genes located primarily in euchromatin. Many putative targets are near retrotransposon LTRs or other intergenic sequences that encode short RNAs, which might epigenetically regulate adjacent genes. Consistent with this, derepression of a solo LTR in drd1 and pol IVb mutants was accompanied by reduced cytosine methylation and transcriptional upregulation of neighboring sequences. The solo LTR and several other LTRs that flank reactivated targets are associated with euchromatic histone modifications but little or no H3K9 dimethylation, a hallmark of constitutive heterochromatin. By contrast, LTRs of retrotransposons that remain silent in the mutants despite reduced cytosine methylation lack euchromatic marks and have H3K9 dimethylation. We propose that DRD1 and Pol IVb establish a basal level of silencing that can potentially be reversed in euchromatin, and further reinforced in heterochromatin by other proteins that induce more stable modifications
    corecore