12,873 research outputs found

    Symmetry classes for even-order tensors

    Full text link
    The purpose of this article is to give a complete and general answer to the recurrent problem in continuum mechanics of the determination of the number and the type of symmetry classes of an even-order tensor space. This kind of investigation was initiated for the space of elasticity tensors. Since then, different authors solved this problem for other kinds of physics such as photoelectricity, piezoelectricity, flexoelectricity, and strain-gradient elasticity. All the aforementioned problems were treated by the same computational method. Although being effective, this method suffers the drawback not to provide general results. And, furthermore, its complexity increases with the tensorial order. In the present contribution, we provide general theorems that directly give the sought results for any even-order constitutive tensor. As an illustration of this method, and for the first time, the symmetry classes of all even-order tensors of Mindlin second strain-gradient elasticity are provided.Comment: Mathematics and Mechanics of Complex Systems (2013) (Accepted

    Bounding rare event probabilities in computer experiments

    Full text link
    We are interested in bounding probabilities of rare events in the context of computer experiments. These rare events depend on the output of a physical model with random input variables. Since the model is only known through an expensive black box function, standard efficient Monte Carlo methods designed for rare events cannot be used. We then propose a strategy to deal with this difficulty based on importance sampling methods. This proposal relies on Kriging metamodeling and is able to achieve sharp upper confidence bounds on the rare event probabilities. The variability due to the Kriging metamodeling step is properly taken into account. The proposed methodology is applied to a toy example and compared to more standard Bayesian bounds. Finally, a challenging real case study is analyzed. It consists of finding an upper bound of the probability that the trajectory of an airborne load will collide with the aircraft that has released it.Comment: 21 pages, 6 figure

    Generic separating sets for 3D elasticity tensors

    Get PDF
    We define what is a generic separating set of invariant functions (a.k.a. a weak functional basis) for tensors. We produce then two generic separating sets of polynomial invariants for 3D elasticity tensors, one made of 19 polynomials and one made of 21 polynomials (but easier to compute) and a generic separating set of 18 rational invariants. As a byproduct, a new integrity basis for the fourth-order harmonic tensor is provided

    Anisotropic and dispersive wave propagation within strain-gradient framework

    Full text link
    In this paper anisotropic and dispersive wave propagation within linear strain-gradient elasticity is investigated. This analysis reveals significant features of this extended theory of continuum elasticity. First, and contrarily to classical elasticity, wave propagation in hexagonal (chiral or achiral) lattices becomes anisotropic as the frequency increases. Second, since strain-gradient elasticity is dispersive, group and energy velocities have to be treated as different quantities. These points are first theoretically derived, and then numerically experienced on hexagonal chiral and achiral lattices. The use of a continuum model for the description of the high frequency behavior of these microstructured materials can be of great interest in engineering applications, allowing problems with complex geometries to be more easily treated

    Analytical continuum mechanics \`a la Hamilton-Piola: least action principle for second gradient continua and capillary fluids

    Full text link
    In this paper a stationary action principle is proven to hold for capillary fluids, i.e. fluids for which the deformation energy has the form suggested, starting from molecular arguments, for instance by Cahn and Hilliard. Remark that these fluids are sometimes also called Korteweg-de Vries or Cahn-Allen. In general continua whose deformation energy depend on the second gradient of placement are called second gradient (or Piola-Toupin or Mindlin or Green-Rivlin or Germain or second gradient) continua. In the present paper, a material description for second gradient continua is formulated. A Lagrangian action is introduced in both material and spatial description and the corresponding Euler-Lagrange bulk and boundary conditions are found. These conditions are formulated in terms of an objective deformation energy volume density in two cases: when this energy is assumed to depend on either C and grad C or on C^-1 and grad C^-1 ; where C is the Cauchy-Green deformation tensor. When particularized to energies which characterize fluid materials, the capillary fluid evolution conditions (see e.g. Casal or Seppecher for an alternative deduction based on thermodynamic arguments) are recovered. A version of Bernoulli law valid for capillary fluids is found and, in the Appendix B, useful kinematic formulas for the present variational formulation are proposed. Historical comments about Gabrio Piola's contribution to continuum analytical mechanics are also presented. In this context the reader is also referred to Capecchi and Ruta.Comment: 52 page

    Invariant-based approach to symmetry class detection

    Get PDF
    In this paper, the problem of the identification of the symmetry class of a given tensor is asked. Contrary to classical approaches which are based on the spectral properties of the linear operator describing the elasticity, our setting is based on the invariants of the irreducible tensors appearing in the harmonic decomposition of the elasticity tensor [Forte-Vianello, 1996]. To that aim we first introduce a geometrical description of the space of elasticity tensors. This framework is used to derive invariant-based conditions that characterize symmetry classes. For low order symmetry classes, such conditions are given on a triplet of quadratic forms extracted from the harmonic decomposition of the elasticity tensor CC, meanwhile for higher-order classes conditions are provided in terms of elements of H4H^{4}, the higher irreducible space in the decomposition of CC. Proceeding in such a way some well known conditions appearing in the Mehrabadi-Cowin theorem for the existence of a symmetry plane are retrieved, and a set of algebraic relations on polynomial invariants characterizing the orthotropic, trigonal, tetragonal, transverse isotropic and cubic symmetry classes are provided. Using a genericity assumption on the elasticity tensor under study, an algorithm to identify the symmetry class of a large set of tensors is finally provided.Comment: 32 page
    corecore