5,936 research outputs found

    Spinodal fractionation in a polydisperse square well fluid

    Full text link
    Using Kinetic Monte Carlo simulation, we model gas-liquid spinodal decomposition in a size-polydisperse square well fluid, representing a 'near-monodisperse' colloidal dispersion. We find that fractionation (demixing) of particle sizes between the phases begins asserting itself shortly after the onset of phase ordering. Strikingly, the direction of size fractionation can be reversed by a seemingly trivial choice between two inter-particle potentials which, in the monodisperse case, are identical -- we rationalise this in terms of a perturbative, equilibrium theory of polydispersity. Furthermore, our quantitative results show that Kinetic Monte Carlo simulation can provide detailed insight into the role of fractionation in real colloidal systems.Comment: 7 pages, 7 figures, to be published in Phys. Rev.

    The Oberlin College Forensic Union...

    Get PDF
    One of the contributions we believe a college may take to this widespread public discussion is to furnish trained student speakers, capable of providing provocative and critical analyses of current public questions. Since 1927, Oberlin College, through the Forensic Union and the Department of Speech, has offered such a service. This service is available without charge to organizations within a reasonable distance of Oberlin; there is no tariff on public discussion. Organizations are requested to furnish transportation for the speakers or to reimburse them for their traveling expenses, but otherwise the service is a contribution of Oberlin College

    Internationalizing The Discipline: Past, Present and Future

    Get PDF
    The article offers information on the efforts of various associations and academicians to promote the internationalization of communication studies

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar
    • …
    corecore