16 research outputs found

    Animal Models of Drug Addiction

    Get PDF

    Drug Addictions: An Historical and Ethological Overview

    Get PDF

    How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction.

    Get PDF
    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.biopsych.2015.01.00

    Impaired decision making following escalation of cocaine self-administration predicts vulnerability to relapse in rats.

    Get PDF
    Impairments in cost-benefit decision making represent a cardinal feature of drug addiction. However, whether these alterations predate drug exposure, thereby contributing to facilitating loss of control over drug intake, or alternatively arise as a result of drug use and subsequently confer vulnerability to relapse has yet to be determined. Male Sprague-Dawley rats were trained to self-administer (SA) cocaine during 19 daily long-access (12-h) sessions; conditions reliably shown to promote escalation. One week after cocaine SA, rats underwent an extinction/relapse test immediately followed by conditioned stimuli-, stress-, and drug-primed reinstatement challenges. The influence of escalated cocaine intake on decision making was measured over time by four test sessions of a rodent analogue of the Iowa Gambling Task (rGT), once prior to cocaine exposure and then 1 day, 1 week, and 1 month after the last SA session. Substantial individual variability was observed in the influence of escalated cocaine SA on decision-making performance. A subset of rats displayed pronounced deficits, while others showed unaffected or even improved performance on the rat Gambling Task (rGT) 24 hours after the last SA session. When challenged with a relapse test after 1 week of forced abstinence, animals that showed impaired decision making following SA displayed an increased propensity to respond for cocaine under extinction. These data suggest that decision-making deficits in individuals with drug addiction are not antecedent to-but arise as a consequence of-drug exposure. Moreover, these data indicate that susceptibility to the deleterious effects of drugs on decision making confers vulnerability toward relapse.Medical Research Council Leverhulme Trus

    Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits.

    Get PDF
    In the development of addiction, drug seeking becomes habitual and controlled by drug-associated cues, and the neural locus of control over behaviour shifts from the ventral to the dorsolateral striatum. The neural mechanisms underlying this functional transition from recreational drug use to drug-seeking habits are unknown. Here we combined functional disconnections and electrophysiological recordings of the amygdalo-striatal networks in rats trained to seek cocaine to demonstrate that functional shifts within the striatum are driven by transitions from the basolateral (BLA) to the central (CeN) amygdala. Thus, while the recruitment of dorsolateral striatum dopamine-dependent control over cocaine seeking is triggered by the BLA, its long-term maintenance depends instead on the CeN. These data demonstrate that limbic cortical areas both tune the function of cognitive territories of the striatum and thereby underpin maladaptive cocaine-seeking habits.This work was supported by the Fondation pour la Recherche MĂ©dicale (FRM), the United Kingdom Medical Research Council (MRC) Grant 9536855 to BJE, the AXA research fund to ABR, an INSERM Avenir and an Agence Nationale de la Recherche (ANR) grant ANR12 SAMA00201 to DB. Research was conducted within both the MRC/Wellcome Trust Behavioral and Clinical Neuroscience Institute of Cambridge and the Inserm team “Psychobiology of Compulsive Disorders”, University of Poitiers.This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/ncomms1008

    High locomotor reactivity to novelty is associated with an increased propensity to choose saccharin over cocaine: new insights into the vulnerability to addiction.

    Get PDF
    Drug addiction is associated with a relative devaluation of natural or socially-valued reinforcers that are unable to divert addicts from seeking and consuming the drug. Before protracted drug exposure, most rats prefer natural rewards, such as saccharin, over cocaine. However, a subpopulation of animals prefer cocaine over natural rewards and are thought to be vulnerable to addiction. Specific behavioral traits have been associated with different dimensions of drug addiction. For example, anxiety predicts loss of control over drug intake whereas sensation seeking and sign-tracking are markers of a greater sensitivity to the rewarding properties of the drug. However, how these behavioral traits predict the disinterest for natural reinforcers remains unknown. In a population of rats, we identified sensation seekers (HR) on the basis of elevated novelty-induced locomotor reactivity, high anxious rats (HA) based on the propensity to avoid open arms in an elevated-plus maze and sign-trackers (ST) that are prone to approach, and interaction with, reward-associated stimuli. Rats were then tested on their preference for saccharin over cocaine in a discrete-trial choice procedure. We show that HR rats display a greater preference for saccharin over cocaine compared with ST and HA whereas the motivation for the drug was comparable between the three groups. The present data suggest that high locomotor reactivity to novelty, or sensation seeking, by predisposing to an increased choice toward non-drug rewards at early stages of drug use history, may prevent the establishment of chronic cocaine use.This work was funded by an INSERM AVENIR and Agence Nationale de la Recherche (ANR) ANR12 SAMA00201 grant to DB, the rĂ©gion Poitou-Charentes, an AXA research fund fellowship to ABR, and a MinistĂšre de la Recherche et de la Technologie grant to NV. AM was supported by the Behavioural and Clinical Neuroscience Institute of Cambridge.This is the accepted manuscript of a paper published in Neuropsychopharmacology (2015) 40, 577–589; doi:10.1038/npp.2014.204; published online 17 September 2014

    J Neurophysiol

    No full text
    The role of dopamine in regulating spinal cord function is receiving increasing attention, but its actions on spinal motor networks responsible for rhythmic behaviors remain poorly understood. Here, we have explored the modulatory influence of dopamine on locomotory central pattern generator (CPG) circuitry in the spinal cord of premetamorphic Xenopus laevis tadpoles. Bath application of exogenous dopamine to isolated brain stem-spinal cords exerted divergent dose-dependent effects on spontaneous episodic patterns of locomotory-related activity recorded extracellularly from spinal ventral roots. At low concentration (2 ÎŒM), dopamine reduced the occurrence of bursts and fictive swim episodes and increased episode cycle periods. In contrast, at high concentration (50 ÎŒM) dopamine reversed its actions on fictive swimming, now increasing both burst and swim episode occurrences while reducing episode periods. The low-dopamine effects were mimicked by the D2-like receptor agonists bromocriptine and quinpirole, whereas the D1-like receptor agonist SKF 38393 reproduced the effects of high dopamine. Furthermore, the motor response to the D1-like antagonist SCH 23390 resembled that to the D2 agonists, whereas the D2-like antagonist raclopride mimicked the effects of the D1 agonist. Together, these findings indicate that dopamine plays an important role in modulating spinal locomotor activity. Moreover, the transmitter's opposing influences on the same target CPG are likely to be accomplished by a specific, concentration-dependent recruitment of independent D2- and D1-like receptor signaling pathways that differentially mediate inhibitory and excitatory actions

    The anterior insular cortex in the rat exerts an inhibitory influence over the loss of control of heroin intake and subsequent propensity to relapse.

    No full text
    The anterior insular cortex (AIC) has been implicated in addictive behaviour, including the loss of control over drug intake, craving and the propensity to relapse. Evidence suggests that the influence of the AIC on drug-related behaviours is complex as in rats exposed to extended access to cocaine self-administration, the AIC was shown to exert a state-dependent, bidirectional influence on the development and expression of loss of control over drug intake, facilitating the latter but impairing the former. However, it is unclear whether this influence of the AIC is confined to stimulant drugs that have marked peripheral sympathomimetic and anxiogenic effects or whether it extends to other addictive drugs, such as opiates, that lack overt acute aversive peripheral effects. We investigated in outbred rats the effects of bilateral excitotoxic lesions of AIC induced both prior to or after long-term exposure to extended access heroin self-administration, on the development and maintenance of escalated heroin intake and the subsequent vulnerability to relapse following abstinence. Compared to sham surgeries, pre-exposure AIC lesions had no effect on the development of loss of control over heroin intake, but lesions made after a history of escalated heroin intake potentiated escalation and also enhanced responding at relapse. These data show that the AIC inhibits or limits the loss of control over heroin intake and propensity to relapse, in marked contrast to its influence on the loss of control over cocaine intake.This work, carried out at the Department of Psychology, University of Cambridge, was funded by a Programme Grant from the Medical Research Council to BJE and DB (MR/N02530X/1) and a research grant from the Leverhulme Trust to DB (RPG‐2016‐117). DJ is supported by a BBSRC-DTP/Shionogi joint grant to DB (G101457). Heroin hydrochloride was provided to DB by the NIDA Drug Supply Programme
    corecore