64 research outputs found

    Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    Get PDF
    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions

    Control of carbon nanotube morphology by change of applied bias field during growth

    Get PDF
    Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy

    Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age

    Get PDF
    Work by Flavell, Beach, and Chinsky indicated a change in the spontaneous production of overt verbalization behaviors when comparing young children (age 5) with older children (age 10). Despite the critical role that this evidence of a change in verbalization behaviors plays in modern theories of cognitive development and working memory, there has been only one other published near replication of this work. In this Registered Replication Report, we relied on researchers from 17 labs who contributed their results to a larger and more comprehensive sample of children. We assessed memory performance and the presence or absence of verbalization behaviors of young children at different ages and determined that the original pattern of findings was largely upheld: Older children were more likely to verbalize, and their memory spans improved. We confirmed that 5- and 6-year-old children who verbalized recalled more than children who did not verbalize. However, unlike Flavell et al., substantial proportions of our 5- and 6-year-old samples overtly verbalized at least sometimes during the picture memory task. In addition, continuous increase in overt verbalization from 7 to 10 years old was not consistently evident in our samples. These robust findings should be weighed when considering theories of cognitive development, particularly theories concerning when verbal rehearsal emerges and relations between speech and memory

    The impact of supervised weight loss and intentional weight regain on sex hormone binding globulin and testosterone in premenopausal women

    No full text
    <p>What is the impact of intentional weight loss and regain on serum androgens in women? We conducted an ancillary analysis of prospectively collected samples from a randomized controlled trial. The trial involved supervised 10% weight loss (8.5 kg on average) with diet and exercise over 4-6 months followed by supervised intentional regain of 50% of the lost weight (4.6 kg on average) over 4-6 months. Participants were randomized prior to the partial weight regain component to either continuation or cessation of endurance exercise. Analytic sample included 30 obese premenopausal women (mean age of 40 ± 5.9 years, mean baseline body mass index (BMI) of 32.9 ± 4.2 kg/m<sup>2</sup>) with metabolic syndrome. We evaluated sex hormone binding globulin (SHBG), total testosterone (T), free androgen index (FAI), and high molecular weight adiponectin (HMWAdp). Insulin, homeostasis model assessment (HOMA), and quantitative insulin sensitivity check index (QUICKI), and visceral adipose tissue (VAT) measured in the original trial were reanalyzed for the current analytic sample. Insulin, HOMA, and QUICKI improved with weight loss and were maintained despite weight regain. Log-transformed SHBG significantly increased from baseline to weight loss, and then significantly decreased with weight regain. LogFAI and logVAT decreased similarly and increased with weight loss followed by weight regain. No changes were found in logT and LogHMWAdp. There was no significant difference in any tested parameters by exercise between the groups. SHBG showed prominent sensitivity to body mass fluctuations, as reduction with controlled intentional weight regain showed an inverse relationship to VAT and occurred despite stable HMWAdp and sustained improvements with insulin resistance. FAI showed opposite changes to SHBG, while T did not change significantly with weight. Continued exercise during weight regain did not appear to impact these findings.</p
    • …
    corecore