16 research outputs found
T.A. Ward
respectively). A combination of one habitat assessment and Proper Functioning Condition should be utilized to conduct a comprehensive assessment of riparian/stream health. Site characteristics, which were significantly associated with assessment outcomes included entrenchment ratio, substrate size, channel width to depth and slope. This presents a problem in that comparison of assessment outcomes across different streams and stream reaches are confounded by factors such as slope and substrate type, which may not always be indicative of riparian/stream health. The Rosgen Stream Morphology Classification system was used to successfully control for the effect of these site-specific effects on assessment outcome, allowing for comparison of riparian/stream health assessments across streams
Recommended from our members
Watershed research examines rangeland management effects on water quality
Oak- and annual grass-dominated rangelands in California occupy 7.4 million acres, often occurring at the state's urban, wildland and agricultural interface. Rapidly changing land uses in these ecosystems have watershed-scale impacts that are the subject of intense debate among policy-makers, environmentalists and landowners. Watershed research conducted at the UC Hopland Research and Extension Center (HREC) between the 1950s and 1980s provided valuable information for predicting the effects of watershed management activities — such as converting oak and chaparral to grasslands — on water quantity and quality, slope stability and erosion. The research illustrated that conversion from woodland to grassland significantly impacts the hydrology and sediment dynamics of watersheds, suggesting that land-use changes such as vineyards and urban expansion must be evaluated carefully. Preliminary data from a new series of watershed studies initiated at HREC in 1998 indicate that livestock grazing does not significantly increase nutrient and sediment levels in stream water, but that current fecal coliform standards may be exceeded during storm events
Aldosterone mediates the changes in hexose transport induced by low sodium intake in chicken distal intestine
In chickens, low Na+ diets markedly decrease the hexose transport in the rectal segment of the large intestine; transport in the ileum shows a lower, but significant reduction and transport in the jejunum is unaffected. These effects involve both apical (SGLT1) and basolateral (GLUT2) hexose transporters.The role of the renin-angiotensin-aldosterone axis (RAAS) in the epithelial response to Na+ intake was studied in chickens fed high-NaCl (HS) and low-NaCl (LS) diets. The Vmax of α-methyl-D-glucoside and D-glucose were determined in vesicles from the brush-border (BBMVs) and basolateral (BLMVs) membranes, respectively. The binding of phlorizin to BBMV and cytochalasin B to BLMV were used as indicators of the abundance of SGLT1 and GLUT2, respectively.In HS-adapted chickens, the serum concentration of aldosterone (means ± S.E.M.) was 35 ± 5 pg ml−1 (n = 6) and that of renin was 20 ± 2 ng ml−1 (n = 3). In LS-fed birds, these values were 166 ± 12 pg ml−1 (n = 6) and 122 ± 5 ng ml−1 (n = 3), respectively. Administration of captopril, the inhibitor of the angiotensin-converting enzyme (ACE), to LS-chickens lowered the aldosterone serum concentration without affecting the renin concentration. Captopril also prevented the reduction of apical and basolateral hexose transport in ileum and rectum characteristic of the intestinal response to LS adaptation.Administration of the aldosterone antagonist spironolactone to LS-adapted chickens did not affect the serum concentrations of aldosterone, but prevented the effects of LS intake on hexose transport in both apical and basolateral membranes. This suggests that the effects of aldosterone are mediated by cytosolic mineralcorticoid receptors.Administration of exogenous aldosterone to HS-fed birds induced hexose transport and binding properties typical of the LS-adapted animals. These findings support the view that aldosterone, besides its primary role in controlling intestinal Na+ absorption, can also modulate the expression of apical and basolateral glucose transporters in the chicken distal intestine