1,061 research outputs found

    Charging of single Si nanocrystals by atomic force microscopy

    Get PDF
    Conducting-tip atomic force microscopy (AFM) has been used to electronically probe silicon nanocrystals on an insulating substrate. The nanocrystal samples were produced by aerosol techniques and size classified; nanocrystal size can be controlled in the size range of 2-50 nm with a size variation of less than 10%. Using a conducting tip, the charge was injected directly into the nanocrystals, and the subsequent dissipation of the charge was monitored. Estimates of the injected charge can be made by comparison of the data with an intermittent contact mode model of the AFM response to the electrostatic force produced by the stored charge

    GaAs monolithic frequency doublers with series connected varactor diodes

    Get PDF
    GaAs monolithic frequency doublers using series connected varactor diodes have been fabricated for the first time. Output powers of 150 mW at 36.9 GHz with 24% efficiency and 300 mW at 24.8 GHz with 18% efficiency have been obtained. Peak efficiencies of 35% at output power levels near 100 mW have been achieved at both frequencies. Both K-band and Ka-band frequency doublers are derived from a lower power, single-diode design by series connection of two diodes and scaling to achieve different power and frequency specifications. Their fabrication was accomplished using the same process sequence

    Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation

    Get PDF
    Si nanocrystals (diameter 2–5 nm) were formed by 35 keV Si + implantation at a fluence of 6 × 1016 Si/cm2 into a 100 nm thick thermally grown SiO2 film on Si (100), followed by thermal annealing at 1100 °C for 10 min. The nanocrystals show a broad photoluminescence spectrum, peaking at 880 nm, attributed to the recombination of quantum confined excitons. Rutherford backscattering spectrometry and transmission electron microscopy show that annealing these samples in flowing O2 at 1000 °C for times up to 30 min results in oxidation of the Si nanocrystals, first close to the SiO2 film surface and later at greater depths. Upon oxidation for 30 min the photoluminescence peak wavelength blueshifts by more than 200 nm. This blueshift is attributed to a quantum size effect in which a reduction of the average nanocrystal size leads to emission at shorter wavelengths. The room temperature luminescence lifetime measured at 700 nm increases from 12 µs for the unoxidized film to 43 µs for the film that was oxidized for 29 min

    Photovoltaic Performance of Ultrasmall PbSe Quantum Dots

    Get PDF
    We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (~0.6 V), and thus an increase in overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of ~1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent is also strongly affected by the coherent interference in the thin film due to Fabry-Pérot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency

    L-band radar sensing of soil moisture

    Get PDF
    The performance of an L-band, 25 cm wavelength imaging synthetic aperture radar was assessed for soil moisture determination, and the temporal variability of radar returns from a number of agricultural fields was studied. A series of three overflights was accomplished over an agricultural test site in Kern County, California. Soil moisture samples were collected from bare fields at nine sites at depths of 0-2, 2-5, 5-15, and 15-30 cm. These gravimetric measurements were converted to percent of field capacity for correlation to the radar return signal. The initial signal film was optically correlated and scanned to produce image data numbers. These numbers were then converted to relative return power by linear interpolation of the noise power wedge which was introduced in 5 dB steps into the original signal film before and after each data run. Results of correlations between the relative return power and percent of field capacity (FC) demonstrate that the relative return power from this imaging radar system is responsive to the amount of soil moisture in bare fields. The signal returned from dry (15% FC) and wet (130% FC) fields where furrowing is parallel to the radar beam differs by about 10 dB

    Ammonia Monitor

    Get PDF
    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia

    Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    Get PDF
    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration

    Geochronology of the middle Eocene Purple Bench locality (Devil’s Graveyard Formation), Trans-Pecos Texas, USA

    Get PDF
    Purple Bench is a middle Eocene fossil locality in the Devil’s Graveyard Formation of the Trans-Pecos region of West Texas. In addition to yielding a range of taxa characteristic of the Uintan North American Land Mammal Age, the Purple Bench locality is noteworthy in documenting a number of endemic species that are known only from the site. Despite the Uintan character of the mammalian fauna, the absolute age of Purple Bench is a matter of debate. This uncertainty stems from the wide interval of time encompassed by current radiometric dates bracketing the Purple Bench locality and from conflicting magnetostratigraphic correlations in the Devil’s Graveyard Formation. This study constrains the absolute age of the Purple Bench locality through detrital zircon U-Pb geochronological analyses. For these analyses, 147 new detrital zircon U-Pb ages were collected from five tuffaceous sandstones and reworked tuff horizons and analyzed via Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). These new detrital zircon U-Pb geochronological analyses suggest a maximum depositional age of 43.7 +0.8 / -0.2 Ma for the Purple Bench tuff, a significant marker horizon immediately below the Purple Bench locality. These new maximum depositional age dates presented here provide constraints on the true depositional age of the lower and middle members of the Devil’s Graveyard Formation, bringing clarity to the previously ambiguous age of the fossil-bearing Purple Bench locality. The age constraints presented here also aid the characterization of the temporally and spatially variable Uintan North American Land Mammal Age

    A novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications

    Get PDF
    This paper describes the fabrication, and structural and electrical characterization of a new, aerosol-nanocrystal floating-gate FET, aimed at non-volatile memory (NVM) applications. This aerosol-nanocrystal NVM device features program/erase characteristics comparable to conventional stacked gate NVM devices, excellent endurance (>l0^5 P/E cycles), and long-term non-volatility in spite of a thin bottom oxide (55-60Å). In addition, a very simple fabrication process makes this aerosol-nanocrystal NVM device a potential candidate for low cost NVM applications

    Effects of Personality and Gender on Self-Other Agreement in Ratings of Leadership

    Get PDF
    We explore the role of leader personality (i.e., the Big 5 traits: Conscientiousness, Agreeableness, Openness, Extraversion, and Neuroticism) and gender in self–other (dis)agreement (SOA) in ratings of leadership. We contend that certain aspects of the leader's persona may be more or less related to self- or other-ratings of the leader's behaviour if those aspects are (1) more or less observable by others, (2) more or less related to internal thoughts versus external behaviours, (3) more or less prone to self-enhancement or self-denigrating biases, or (4) more or less socially desirable. We utilize statistical methodologies that capture fully the effects of multiple independent variables on the congruence between two dependent variables (Edwards, 1995, Organizational Behavior and Human Decision Processes, 64, 307), which previously have not been applied to this area of research. Our results support hypotheses predicting less SOA as leader Conscientiousness increases and greater SOA as Agreeableness and Neuroticism increase. Additionally, we found gender to be an important factor in SOA; female leaders exhibited greater SOA than did their male counterparts. We discuss the implications of these findings, limitations, and future research directions
    corecore