2 research outputs found

    A Study of Fused Deposition Modeling (FDM) 3-D Printing Using Mechanical Testing and Thermography

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Fused deposition modeling (FDM) represents one of the most common techniques for rapid proto-typing in additive manufacturing (AM). This work applies image based thermography to monitor the FDM process in-situ. The nozzle temperature, print speed and print orientation were adjusted during the fabrication process of each specimen. Experimental and numerical analysis were performed on the fabricated specimens. The combination of the layer wise temperature profile plot and temporal plot provide insights for specimens fabricated in x, y and z-axis orientation. For the x-axis orientation build possessing 35 layers, Specimens B16 and B7 printed with nozzle temperature of 225 C and 235 C respectively, and at printing speed of 60 mm/s and 100 mm/s respectively with the former possessing the highest modulus, yield strength, and ultimate tensile strength. For the y-axis orientation build possessing 59 layers, Specimens B23, B14 and B8 printed with nozzle temperature of 215 C, 225 C and 235 C respectively, and at printing speed of 80 mm/s, 80 mm/s and 60 mm/s respectively with the former possessing the highest modulus and yield strength, while the latter the highest ultimate tensile strength. For the z-axis orientation build possessing 1256 layers, Specimens B6, B24 and B9 printed with nozzle temperature of 235 C, 235 C and 235 ➦C respectively, and at printing speed of 80 mm/s, 80 mm/s and 60 mm/s respectively with the former possessing the highest modulus and ultimate tensile strength, while B24 had the highest yield strength and B9 the lowest modulus, yield strength and ultimate tensile strength. The results show that the prints oriented in the y-axis orientation perform relatively better than prints in the x-axis and z-axis orientation

    A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach

    Get PDF
    Global interest in Building Integrated Photovoltaics (BIPV) has grown following forecasts of a compound annual growth rate of 18.7% and a total of 5.4 GW installed worldwide from 2013 to 2019. Although the BIPV technology has been in the public domain for the last three decades, its adoption has been hindered. Existing literature asserts that proper information and education at the proposal or early design stage is an important way of addressing adoption barriers. However, there is a lack of BIPV communication approaches for research, and market proposals that focus on clear information about its benefits. This has limited the adoption of BIPV.. Based on this, the present study aims to develop a conceptual framework for an educative-communication approach for presenting BIPV proposals to encourage its adoption. This is aimed at developing holistic research and market proposals which justify scholarly investigation and financial investment. Using a multiple case study investigation and Design Research Methodology (DRM) principles, the study developed an approach which combines core communication requirements, the pillars of sustainability and a hierarchical description of BIPV alongside its unique advantages. A two-step evaluation strategy involving an online pilot survey and a literature-based checklist, was used to validate the effectiveness of the developed approach. Our results show that understanding environmental and economic benefits was found to be significantly important to people who are likely adopters of BIPV (p < 0.05), making these benefits crucial drivers of adoption. Statistical significance was also found between those who do not know the benefits of using solar energy for electricity, and interest in knowing these benefits (p < 0.05). We thus conclude that proper communication of these benefits can safely be advanced as important facilitators of BIPV adoption. In general, this study elaborates the need and strategies for appropriate dissemination of innovative ideas to encourage and promote adoption of technological advancement for a sustainable global future
    corecore