185 research outputs found

    Prediction of blood back spatter from a gunshot in bloodstain pattern analysis

    Get PDF
    A theoretical model for predicting and interpreting blood-spatter patterns resulting from a gunshot wound is proposed. The physical process generating a backward spatter of blood is linked to the Rayleigh-Taylor instability of blood accelerated toward the surrounding air, allowing the determination of the initial distribution of drop sizes and velocities. Then the motion of many drops in air is considered with governing equations accounting for gravity and air drag. Based on these equations, a numerical solution is obtained. It predicts the atomization process, the trajectories of the back-spatter drops of blood from the wound to the ground, the impact angle, and the impact Weber number on the ground, as well as the distribution and location of bloodstains and their shape and sizes. A parametric study is undertaken to predict patterns of backward blood spatter under realistic conditions corresponding to the experiments conducted in the present work. The results of the model are compared to the experimental data on back spatter generated by a gunshot impacting a blood-impregnated sponge

    Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis

    Get PDF
    A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood drops can be determined. Then, the equations of motion are solved, describing drop trajectories in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through air, which diminish air drag on the subsequent drops. Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet located between the shooter and the target (and perforated by the bullet) is predicted and compared with experimental data. The experimental data were acquired with a porous polyurethane foam sheet target impregnated with swine blood, and the blood drops were collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted numerically and compared to the experimental data for the number of drops, their area, the total stain area, and the final impact angle as functions of radial location from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted results with the experimental data revealed satisfactory agreement. The predictions also allow one to find the impact Weber number on the collection screen, which is necessary to predict stain shapes and sizes

    Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study

    Full text link
    An efficient way to precisely pattern particles on solid surfaces is to dispense and evaporate colloidal drops, as for bioassays. The dried deposits often exhibit complex structures exemplified by the coffee ring pattern, where most particles have accumulated at the periphery of the deposit. In this work, the formation of deposits during the drying of nanoliter colloidal drops on a flat substrate is investigated numerically and experimentally. A finite-element numerical model is developed that solves the Navier-Stokes, heat and mass transport equations in a Lagrangian framework. The diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. Laplace stresses and thermal Marangoni stresses are accounted for. The particle concentration is tracked by solving a continuum advection-diffusion equation. Wetting line motion and the interaction of the free surface of the drop with the growing deposit are modeled based on criteria on wetting angles. Numerical results for evaporation times and flow field are in very good agreement with published experimental and theoretical results. We also performed transient visualization experiments of water and isopropanol drops loaded with polystyrene microsphere evaporating on respectively glass and polydimethylsiloxane substrates. Measured evaporation times, deposit shape and sizes, and flow fields are in very good agreement with the numerical results. Different flow patterns caused by the competition of Marangoni loops and radial flow are shown to determine the deposit shape to be either a ring-like pattern or a homogeneous bump

    Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

    Full text link
    This article describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas-liquid interface and of the neighboring fluid. A first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to theoretical result. A second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents

    Acoustic excitation of superharmonic capillary waves on a meniscus in a planar micro-geometry

    Full text link
    The effects of ultrasound on the dynamics of an air-water meniscus in a planar micro-geometry are investigated experimentally. The sonicated meniscus exhibits harmonic traveling waves or standing waves, the latter corresponding to a higher ultrasound level. Standing capillary waves with subharmonic and superharmonic frequencies are also observed, and are explained in the framework of parametric resonance theory, using the Mathieu equation

    Adapting response to a measles outbreak in a context of high vaccination and breakthrough cases: an example from Vaud, Switzerland, January to March 2024.

    Get PDF
    A measles outbreak with 51 cases occurred in the canton of Vaud, Switzerland, between January and March 2024. The outbreak was triggered by an imported case, and 37 (72.5%) subsequent cases were previously vaccinated individuals. Epidemiological investigations showed that vaccinated measles cases were symptomatic and infectious. In a highly vaccinated population, it is important to raise awareness among healthcare professionals to suspect and test for measles virus when an outbreak is declared, irrespective of the vaccination status of the patients

    Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria

    Full text link
    We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported towards the gas removal section, where they slide along a hydrophobic membrane until complete removal. The system has been successfully modeled and four necessary operating criteria have been determined to achieve a complete separation of the gas from the liquid. The first criterion is that the bubble length needs to be larger than the channel diameter. The second criterion is that the gas plug should stay on the membrane for a time sufficient to transport all the gas through the membrane. The third criterion is that the gas plug travel speed should be lower than a critical value: otherwise a stable liquid film between the bubble and the membrane prevents mass transfer. The fourth criterion is that the pressure difference across the membrane should not be larger than the Laplace pressure to prevent water from leaking through the membrane
    corecore