2 research outputs found

    F-Classify: Fuzzy Rule Based Classification Method for Privacy Preservation of Multiple Sensitive Attributes

    Get PDF
    With the advent of smart health, smart cities, and smart grids, the amount of data has grown swiftly. When the collected data is published for valuable information mining, privacy turns out to be a key matter due to the presence of sensitive information. Such sensitive information comprises either a single sensitive attribute (an individual has only one sensitive attribute) or multiple sensitive attributes (an individual can have multiple sensitive attributes). Anonymization of data sets with multiple sensitive attributes presents some unique problems due to the correlation among these attributes. Artificial intelligence techniques can help the data publishers in anonymizing such data. To the best of our knowledge, no fuzzy logic-based privacy model has been proposed until now for privacy preservation of multiple sensitive attributes. In this paper, we propose a novel privacy preserving model F-Classify that uses fuzzy logic for the classification of quasi-identifier and multiple sensitive attributes. Classes are defined based on defined rules, and every tuple is assigned to its class according to attribute value. The working of the F-Classify Algorithm is also verified using HLPN. A wide range of experiments on healthcare data sets acknowledged that F-Classify surpasses its counterparts in terms of privacy and utility. Being based on artificial intelligence, it has a lower execution time than other approaches

    Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches

    No full text
    The inability of traditional privacy-preserving models to protect multiple datasets based on sensitive attributes has prompted researchers to propose models such as SLOMS, SLAMSA, (p, k)-Angelization, and (p, l)-Angelization, but these were found to be insufficient in terms of robust privacy and performance. (p, l)-Angelization was successful against different privacy disclosures, but it was not efficient. To the best of our knowledge, no robust privacy model based on fuzzy logic has been proposed to protect the privacy of sensitive attributes with multiple records. In this paper, we suggest an improved version of (p, l)-Angelization based on a hybrid AI approach and privacy-preserving approach like Generalization. Fuzz-classification (p, l)-Angel uses artificial intelligence based fuzzy logic for classification, a high-dimensional segmentation technique for segmenting quasi-identifiers and multiple sensitive attributes. We demonstrate the feasibility of the proposed solution by modelling and analyzing privacy violations using High-Level Petri Nets. The results of the experiment demonstrate that the proposed approach produces better results in terms of efficiency and utility
    corecore