173 research outputs found
Foliations of Tangent Bundle in a Finsler Manifold
In this paper, a frame is introduced on tangent bundle of a Finsler manifold
in a manner that it makes some simplicity to study the properties of the
natural foliations in tangent bundle. Moreover, we show that the indicatrix
bundle of a Finsler manifold with lifted sasaki metric and natural almost
complex structure on tangent bundle cannot be a sasakian manifold.Comment: 11 pages. arXiv admin note: substantial text overlap with
arXiv:1106.482
The Warped Product of Hamiltonian Spaces
In this paper, the geometric properties of warped product Hamiltonian spaces are studied. It is shown there is a close geometrical relation between a warped product Hamiltonian space and its base Hamiltonian manifolds. For example, it is proved that for nonconstant warped function f, the Sasaki lifted metric G of Hamiltonian warped product space is bundle-like for its vertical foliation if and only if based Hamiltonian spaces are pseudo-Riemannian manifolds.ΠΠ·ΡΡΠ΅Π½Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΎΠ²ΡΡ
ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ² Π² Π²ΠΈΠ΄Π΅ ΠΈΡΠΊΡΠΈΠ²Π»Π΅Π½Π½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΎΠ²ΡΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ - ΠΈΡΠΊΡΠΈΠ²Π»Π΅Π½Π½ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π΅Π³ΠΎ Π±Π°Π·ΠΎΠ²ΡΠΌΠΈ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΎΠ²ΡΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡΠΌΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅ΡΠ½Π°Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ²ΡΠ·Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ Π½Π΅ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΈΡΠΊΡΠΈΠ²Π»ΡΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f ΠΌΠ΅ΡΡΠΈΠΊΠ° Π‘Π°ΡΠ°ΠΊΠΈ G Π΄Π»Ρ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΎΠ²Π° ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° - ΠΈΡΠΊΡΠΈΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΡΠΈΠΊΠΎΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΅Π΅ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΌΡ ΡΠ»ΠΎΠ΅Π½ΠΈΡ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π±Π°Π·ΠΎΠ²ΡΠ΅ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΎΠ²Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠ΅Π²Π΄ΠΎ-ΡΠΈΠΌΠ°Π½ΠΎΠ²ΡΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡΠΌΠΈ.The first author would like to thank the INSF for the partially support on the grant number 92006616
- β¦