8 research outputs found

    CFD Analysis of Nanorefrigerant through Adiabatic Capillary Tube of Vapour Compression Refrigeration System

    Get PDF
    Over time attempts have been made to understand the flow characteristics of refrigerants through capillary tubes as well as to seek more thermally efficient working fluids for refrigeration systems. This study investigated the flow of nanorefrigerants through adiabatic capillary tubes of vapour compression refrigeration systems; and afterwards creates numerical models that will account for solution of refrigerant side pressure drop and mass flow rate. Also in this study, a CFD flow analysis was carried out using a CFD simulation/solver such that the results of the simulations obtained were discussed so as to establish a distinction between the conventional and nano-refrigerants. Upon comparison of the CFD results of nanorefrigerants (CuR134a, CuR600a) and the conventional refrigerants (R134a, R600a), the conventional refrigerants were noticed to have more isothermal regions implying that heat was not being transferred quickly enough to raise the temperature of the adjoining region thus proving that the addition of nanoparticles improves the thermophysical properties of the base fluid. Also, based on the results of the study of the flow patterns of both working fluids, the density of pressure contours in the conventional refrigerants was far larger than that of the nanorefrigerant implying that more compressor work and ultimately greater power will be required. The findings from this study were validated with experimental results showing that a CFD analysis tool/method can be employed to understudy the phenomenal changes that take place in nano-refrigerant movement through capillary tubes without recourse to experimentation

    Feasibility and Econometrics Assessment of Standalone and Hybrid RE Facilities for Rural Community Utilization and Embedded Generation in North-West, Nigeria

    Get PDF
    This study assessed the feasibility and economic viability of renewable energy resources for power generation at rural communities of six sites in North-West Nigeria. A specific electric load profile was developed to suite the rural communities made up of 200 homes, a school and health centre. The required load was analysed as 358 kWh per day, with 46 kW primary peak load and 20 kW deferrable peak load. The employed data obtained from the Nigeria Meteorological Department, were those of daily mean wind speeds, daily global solar radiation, sunshine hours, minimum and maximum air temperature, and minimum and maximum relative humidity for 24 years spanning 1987-2010. The assessment of the design that will optimally meet the daily load demand with LOLP of 0.01 was carried out by considering 3 standalone applications of PV, Wind and Diesel, and a hybrid design of Wind-PV. The outcome showed that the most economically viable alternative for power generation at the different locations in Gusau, Kaduna and Yelwa was the hybrid system while wind standalone suffices for the other sites. The values of LCOE for the both the hybrid and standalone wind system are competitive with grid electricit

    Feasibility and Econometrics Assessment of Standalone and Hybrid RE Facilities for Rural Community Utilization and Embedded Generation in North-West, Nigeria

    Get PDF
    This study assessed the feasibility and economic viability of renewable energy resources for power generation at rural communities of six sites in North-West Nigeria. A specific electric load profile was developed to suite the rural communities made up of 200 homes, a school and health centre. The required load was analysed as 358 kWh per day, with 46 kW primary peak load and 20 kW deferrable peak load. The employed data obtained from the Nigeria Meteorological Department, were those of daily mean wind speeds, daily global solar radiation, sunshine hours, minimum and maximum air temperature, and minimum and maximum relative humidity for 24 years spanning 1987-2010. The assessment of the design that will optimally meet the daily load demand with LOLP of 0.01 was carried out by considering 3 standalone applications of PV, Wind and Diesel, and a hybrid design of Wind-PV. The outcome showed that the most economically viable alternative for power generation at the different locations in Gusau, Kaduna and Yelwa was the hybrid system while wind standalone suffices for the other sites. The values of LCOE for the both the hybrid and standalone wind system are competitive with grid electricit

    Feasibility and Econometrics Assessment of Standalone and Hybrid RE Facilities for Rural Community Utilization and Embedded Generation in North-West, Nigeria

    Get PDF
    This study assessed the feasibility and economic viability of renewable energy resources for power generation at rural communities of six sites in North-West Nigeria. A specific electric load profile was developed to suite the rural communities made up of 200 homes, a school and health centre. The required load was analysed as 358 kWh per day, with 46 kW primary peak load and 20 kW deferrable peak load. The employed data obtained from the Nigeria Meteorological Department, were those of daily mean wind speeds, daily global solar radiation, sunshine hours, minimum and maximum air temperature, and minimum and maximum relative humidity for 24 years spanning 1987-2010. The assessment of the design that will optimally meet the daily load demand with LOLP of 0.01 was carried out by considering 3 standalone applications of PV, Wind and Diesel, and a hybrid design of Wind-PV. The outcome showed that the most economically viable alternative for power generation at the different locations in Gusau, Kaduna and Yelwa was the hybrid system while wind standalone suffices for the other sites. The values of LCOE for the both the hybrid and standalone wind system are competitive with grid electricit

    Assessment of the wind energy potential and economic viability of selected sites along Nigeria’s coastal and offshore locations

    Get PDF
    Wind energy is a promising sector in the power generation industry because it is renewable and globally available. In this research work, the wind energy potential and the economic viability of using wind turbines to generate electricity in some selected sites along Nigeria’s coastline and offshore locations were evaluated. Using the statistical two-parameter Weibull probability density function method, wind speed data retrieved from an indigenous oceanography company and global information system (GIS) were analyzed for wind energy harvest. The energy output, unit cost of electricity generated by three commercially available wind turbine models (3 MW, 4 MW, and 6 MW), net present value (NPV), and payback period were evaluated. Levelized cost of electricity (LCOE) sensitivity to the discount rate, foundation cost, and turbine lifespan were also examined. The findings from the study showed that the offshore sites have four times greater wind power potential than the coastal sites. The offshore sites can be categorized as “class IIIb” wind sites, making the locations suitable for wind energy harvest. The techno-economic analysis showed that the net gains from investing in a 60-MW wind farm in the region can be as high as 62,000,000.00,whiletheprojectpaybacktimecanbeaslowas5.74 years.TwooftheoffshoresitesarerecommendedforthedevelopmentofanoffshorewindfarminthecountrybecauseoftheirrelativelylowLCOE(0.0462,000,000.00, while the project payback time can be as low as 5.74 years. Two of the offshore sites are recommended for the development of an offshore wind farm in the country because of their relatively low LCOE (0.04 /kWh), higher NPV, and lower investment payback time. The Vesta-117 model wind turbine is the most suitable wind turbine system and recommended for use in the region because of its low cut-in speed (3 m/s). Sensitivity analysis showed that the LCOE of offshore-01 was reduced by 31% when the lifespan of the V117 turbine was increased from 20 to 25 years. The results also showed that reductions in the discount rate and foundation cost positively affect the LCOE

    Bioenergy technology development in Nigeria – pathway to sustainable energy development

    Get PDF
    In Nigeria, high and outrageous energy cost constitutes a serious challenge to all aspects of the economy. And this has been a subject of concern in the country over a period of time. A dependable and renewable energy source is of utmost desire to strengthen the nation’s economy and this urgent need cannot be overlooked. As a result of the erratic and expensive power supply to the national grid, it has become ultimately necessary to search for other inexpensive sources of energy to meet the ever increasing energy needs for rural and urban dwellers. In view of the above energy situation in Nigeria, this paper aimed at carrying out a comprehensive review on bioenergy technology option as a pathway to achieving sustainable energy development in the country. The potential, current progressive stages, and prospects of bioenergy conversion techniques, in the Nigeria context, are discussed. The barriers to bioenergy technology development in Nigeria with possible solutions are also presente
    corecore