61 research outputs found

    Role of the Small GTPase Rho3 in Golgi/Endosome Trafficking through Functional Interaction with Adaptin in Fission Yeast

    Get PDF
    BACKGROUND: We had previously identified the mutant allele of apm1(+) that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+), which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(-) sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-), and valproic acid. Green fluorescent protein (GFP)-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence of a direct link between the small GTPase Rho and the clathrin-associated adaptor protein-1 in membrane trafficking

    Hot Electron Spectra in Plain, Cone and Integrated Targets for FIREX-I using Electron Spectrometer

    Get PDF
    The traditional fast ignition scheme is that a compressed core created by an imploding laser is auxiliary heated and ignited by the hot electrons (produced by a short pulse laser guided through the cone). Here, the most suitable target design for fast ignition can be searched for by comparison of the spectra between varied targets using an electron spectrometer

    Synthesis of Novel Crosslinked Chitosans with a Higher Fatty Diacid Diglycidyl and Their Adsorption Abilities towards Acid Dyes

    No full text
    Novel chitosan-based adsorbent materials with a higher fatty diacid diglycidyl as the crosslinking agent were synthesized and the adsorption abilities of the resulting polymers evaluated towards typical acid dyes. The successful formation of a crosslinked structure was confirmed via infrared spectroscopic measurements and the solubility of the polymer towards 10% aqueous solutions of acetic and formic acids determined. At higher dye concentrations, the adsorption abilities of the crosslinked chitosan towards hydrophilic CI Acid Orange 7 and CI Acid Red 1 increased with decreasing degree of substitution. However, at lower dye concentrations, the crosslinked chitosan with the lowest degree of substitution exhibited the lowest adsorption capability. With such hydrophilic acid dyes, the extent of adsorption decreased significantly as the pH of the solution increased. On the other hand, CI Acid Red 138, which contains a dodecyl group in the chemical structure, was adsorbed to a considerable extent even at higher pH values, suggesting hydrophobic interaction between the alkyl group in the dye molecule and the hydrophobic crosslinker

    Separation of Fructosyl Oligosaccharides in Maple Syrup by Using Charged Aerosol Detection

    No full text
    Fructosyl oligosaccharides, including fructo-oligosaccharide (FOS), are gaining popularity as functional oligosaccharides and have been found in various natural products. Our previous study suggested that maple syrup contains an unidentified fructosyl oligosaccharide. Because these saccharides cannot be detected with high sensitivity using derivatization methods, they must be detected directly. As a result, an analytical method based on charged aerosol detection (CAD) that can detect saccharides directly was optimized in order to avoid relying on these structures and physical properties to clarify the profile of fructosyl oligosaccharides in maple syrup. This analytical method is simple and can analyze up to hepta-saccharides in 30 min. This analytical method was also reliable and reproducible with high validation values. It was used to determine the content of saccharides in maple syrup, which revealed that it contained not only fructose, glucose, and sucrose but also FOS such as 1-kestose and nystose. Furthermore, we discovered a fructosyl oligosaccharide called neokestose in maple syrup, which has only been found in a few natural foods. These findings help to shed light on the saccharides profile of maple syrup

    A Proteomic Approach for Understanding the Mechanisms of Delayed Corneal Wound Healing in Diabetic Keratopathy Using Diabetic Model Rat

    No full text
    Diabetes mellitus is a widespread metabolic disorder, and long-term hyperglycemia in diabetics leads to diabetic keratopathy. In the present study, we used a shotgun liquid chromatography/mass spectrometry-based global proteomic approach using the cornea of streptozotocin-induced diabetic (STZ) rats to examine the mechanisms of delayed corneal wound healing in diabetic keratopathy. Applying a label-free quantitation method based on spectral counting, we identified 188 proteins that showed expression changes of >2.0-fold in the cornea of STZ rats. In particular, the level of lumican expression in the cornea of STZ rats was higher than that of the normal rats. In the cornea of the normal rat, the expression level of lumican was elevated during the wound healing process, and it returned to the same expression level as before cornea injury after the wound was healed completely. On the other hand, a high expression level of lumican in the cornea of STZ rats was still maintained even after the wound was healed completely. In addition, adhesion deficiency in corneal basal cells and Bowman’s membrane was observed in the STZ rat. Thus, abnormally overexpressed lumican may lead to adhesion deficiency in the cornea of STZ rats
    corecore