16 research outputs found

    Nucleotide alterations in the HLA-C class I gene can cause aberrant splicing and marked changes in RNA levels in a polymorphic context-dependent manner

    Get PDF
    Polymorphisms of HLA genes, which play a crucial role in presenting peptides with diverse sequences in their peptide-binding pockets, are also thought to affect HLA gene expression, as many studies have reported associations between HLA gene polymorphisms and their expression levels. In this study, we devised an ectopic expression assay for the HLA class I genes in the context of the entire gene, and used the assay to show that the HLA-C*03:03:01 and C*04:01:01 polymorphic differences observed in association studies indeed cause different levels of RNA expression. Subsequently, we investigated the C*03:23N null allele, which was previously noted for its reduced expression, attributed to an alternate exon 3 3’ splice site generated by G/A polymorphism at position 781 within the exon 3. We conducted a thorough analysis of the splicing patterns of C*03:23N, and revealed multiple aberrant splicing, including the exon 3 alternative splicing, which overshadowed its canonical counterpart. After confirming a significant reduction in RNA levels caused by the G781A alteration in our ectopic assay, we probed the function of the G-rich sequence preceding the canonical exon 3 3’ splice site. Substituting the G-rich sequence with a typical pyrimidine-rich 3’ splice site sequence on C*03:23N resulted in a marked elevation in RNA levels, likely due to the enhanced preference for the canonical exon 3 3’ splice site over the alternate site. However, the same substitution led to a reduction in RNA levels for C*03:03:01. These findings suggested the dual roles of the G-rich sequence in RNA expression, and furthermore, underscore the importance of studying polymorphism effects within the framework of the entire gene, extending beyond conventional mini-gene reporter assays

    Reference Grade Characterization of Polymorphisms in Full-Length HLA Class I and II Genes With Short-Read Sequencing on the ION PGM System and Long-Reads Generated by Single Molecule, Real-Time Sequencing on the PacBio Platform

    Get PDF
    Although NGS technologies fuel advances in high-throughput HLA genotyping methods for identification and classification of HLA genes to assist with precision medicine efforts in disease and transplantation, the efficiency of these methods are impeded by the absence of adequately-characterized high-frequency HLA allele reference sequence databases for the highly polymorphic HLA gene system. Here, we report on producing a comprehensive collection of full-length HLA allele sequences for eight classical HLA loci found in the Japanese population. We augmented the second-generation short read data generated by the Ion Torrent technology with long amplicon spanning consensus reads delivered by the third-generation SMRT sequencing method to create reference grade high-quality sequences of HLA class I and II gene alleles resolved at the genomic coding and non-coding level. Forty-six DNAs were obtained from a reference set used previously to establish the HLA allele frequency data in Japanese subjects. The samples included alleles with a collective allele frequency in the Japanese population of more than 99.2%. The HLA loci were independently amplified by long-range PCR using previously designed HLA-locus specific primers and subsequently sequenced using SMRT and Ion PGM sequencers. The mapped long and short-reads were used to produce a reference library of consensus HLA allelic sequences with the help of the reference-aware software tool LAA for SMRT Sequencing. A total of 253 distinct alleles were determined for 46 healthy subjects. Of them, 137 were novel alleles: 101 SNVs and/or indels and 36 extended alleles at a partial or full-length level. Comparing the HLA sequences from the perspective of nucleotide diversity revealed that HLA-DRB1 was the most divergent among the eight HLA genes, and that the HLA-DPB1 gene sequences diverged into two distinct groups, DP2 and DP5, with evidence of independent polymorphisms generated in exon 2. We also identified two specific intronic variations in HLA-DRB1 that might be involved in rheumatoid arthritis. In conclusion, full-length HLA allele sequencing by third-generation and second-generation technologies has provided polymorphic gene reference sequences at a genomic allelic resolution including allelic variations assigned up to the field-4 level for a stronger foundation in precision medicine and HLA-related disease and transplantation studies

    Human Endogenous Retrovirus (HERVK9) Structural Polymorphism With Haplotypic HLA-A Allelic Associations

    No full text
    The frequency and HLA-A allelic associations of a HERVK9 DNA structural polymorphism located in close proximity to the highly polymorphic HLA-A gene within the major histocompatibility complex (MHC) genomic region were determined in Japanese, African Americans, and Australian Caucasians to better understand its human population evolutionary history. The HERVK9 insertion or deletion was detected as a 3′ LTR or a solo LTR, respectively, by separate PCR assays. The average insertion frequency of the HERVK9.HG was significantly different (P < 1.083e−6) between the Japanese (0.59) and the African Americans (0.34) or Australian Caucasians (0.37). LD analysis predicted a highly significant (P < 1.0e−5) linkage between the HLA-A and HERVK9 alleles, probably as a result of hitchhiking (linkage). Evolutionary time estimates of the solo, 5′ and 3′ LTR nucleotide sequence divergences suggest that the HERVK9 was inserted 17.3 MYA with the first structural deletion occurring 15.1 MYA. The LTR/HLA-A haplotypes appear to have been formed mostly during the past 3.9 MY. The HERVK9 insertion and deletion, detected by a simple and economical PCR method, is an informative genetic and evolutionary marker for the study of HLA-A haplotype variations, human migration, the origins of contemporary populations, and the possibility of disease associations

    Genetic Association between Farrowing Rates and Swine Leukocyte Antigen Alleles or Haplotypes in Microminipigs

    No full text
    We have previously reported specific swine leukocyte antigen (SLA) haplotype associations with significant effects on several reproduction performance traits in a highly inbred miniature pig population of Microminipigs (MMPs). In this study, to clarify the effects on farrowing rates of SLA similarity between mating partners in the MMP population, we compared the farrowing rates as a measure of reproductive success after 1063-cumulative matings among the following three groups of mating partners: (1) completely sharing SLA class I or class II haplotypes or alleles between partners (CS), (2) only one sharing the haplotypes or alleles (OS), and (3) non-sharing the haplotypes or alleles (NS). Average farrowing rates in CS groups consisting of completely sharing SLA class II haplotypes or DRBI and DQB1 alleles were lowest in the three groups. Moreover, lower farrowing rates were indicated in mating pairs with smaller amino acid pairwise genetic distances of SLA-1, SLA-3, DRB1 and DQB1 alleles between the pairs. These results suggested that the dissimilarity of SLA class I and class II alleles between mating partners markedly improved reproductive performance; therefore, SLA alleles or haplotypes are potentially useful genetic markers for the selection of mating pairs in breeding programs and epistatic studies of reproductive traits of MMPs

    Preparation and characterization of monoclonal antibodies recognizing two CD4 isotypes of Microminipigs.

    No full text
    Cluster of differentiation 4 (CD4) molecule expressed on the leukocytes is known to function as a co-receptor for class II major histocompatibility complex (MHC) binding to T cell receptor (TCR) on helper T cells. We previously identified two CD4 alleles (CD4.A and CD4.B) in a Microminipig population based on nucleotide sequencing and PCR detection of their gene sequences. However, CD4.B protein expression was not examined because of the unavailability of a reactive antibody to a CD4.B epitope. In this study, we have produced two swine-specific monoclonal antibodies (mAbs) against CD4.B molecules, one that recognizes only CD4.B (b1D7) and the other that recognizes both the CD4.A and CD4.B alleles (x1E10) and that can be used to distinguish CD4 T cell subsets by flow cytometry and immunohistochemistry. Using these two mAbs, we identified CD4.A and CD4.B allele-specific proteins on the surface of CD4.A (+/+) and CD4.B (+/+) T cells at a similar level of expression. Moreover, stimulation of peripheral blood mononuclear cells (PBMCs) derived from CD4.A (+/+) and CD4.B (+/+) swine with toxic shock syndrome toxin-1 (TSST-1) in vitro similarly activated both groups of cells that exhibited a slight increase in the CD4/CD8 double positive (DP) cell ratio. A large portion of the DP cells from the allelic CD4.A (+/+) and CD4.B (+/+) groups enhanced the total CD4 and class I swine leukocyte antigen (SLA) expression. The x1E10 mAb delayed and reduced the TSST-1-induced activation of CD4 T cells. Thus, CD4.B appears to be a functional protein whose expression on activated T cells is analogous to CD4.A

    Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    No full text
    <div><p>The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen <i>(SLA)-1</i>*<i>0401</i> after the stimulation of peripheral blood mononuclear cells (PBMCs) by <i>Staphylococcus aureus</i> superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only <i>SLA-1</i>*<i>0401</i>, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from <i>SLA-1</i>*<i>0401</i> homozygous pigs were stimulated, the <i>SLA-1</i>*<i>0401</i> mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the <i>SLA-1</i>*<i>0401</i> mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.</p></div

    Tertiary structure of X2F6 mAb and the predicted antibody epitope.

    No full text
    <p>(A) Amino acid sequences of heavy and light chains of the X2F6 variable region. The database sequence PDB ID 3V7A is shown as the control sequence. (B) The predicted tertiary structure of the X2F6 mAb. (C) The tertiary structures of the YLL set in SLA-1*0501, which reacts with X2F6 with high reactivity (left panel), and the DVF set in SLA-1*1104, which cannot react with X2F6 (right panel), are shown. Pink (hydrophobic) and green (hydrophilic) colors represent the amino acid character. The structure is largely different, and the binding affinity is predicted to be different.</p

    Genomic Anatomy of a Premier Major Histocompatibility Complex Paralogous Region on Chromosome 1q21–q22

    No full text
    Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under accession nos. AB045357–AB045365.

    Class I SLA-related mRNA expression after TSST-1 stimulation.

    No full text
    <p>The PBMCs of two pigs with the Hp-16.0 haplotype (individuals #965 and #1938) were examined for classical class I SLA (A) and related mRNA (B) expression after stimulation. Closed squares with a solid line show TSST-1-stimulated PBMCs, open squares with a broken line show IFN-γ stimulation, and closed squares with a dotted line show the negative control.</p
    corecore