31 research outputs found

    PACAP is Implicated in the Stress Axes

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved pleiotropic neuropeptide that functions as a neurotransmitter, neuromodulator and neurotrophic factor. Accumulating evidence implicates PACAP as an important regulator of both central and/or peripheral components of the stress axes, particularly exposure to prolonged or traumatic stress. Indeed, PACAP and its cognate receptors are widely expressed in the brain regions and peripheral tissues that mediate stress-related responses. In the sympathoadrenomedullary system, PACAP is required for sustained epinephrine secretion during metabolic stress. It is likely that PACAP regulates autonomic function and contributes to peripheral homeostasis by maintaining a balance between sympathetic and parasympathetic activity, favoring stimulation of the sympathetic system. Furthermore, PACAP is thought to act centrally on the paraventricular nucleus of the hypothalamus to regulate both the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Intriguingly, PACAP is also active in brain structures that mediate anxiety- and fear-related behaviors, and the expression of PACAP and its receptors are dynamically altered under pathologic conditions. Thus PACAP may influence both hard-wired (genetically determined) stress responses and gene-environment interactions in stress-related psychopathology. This article aims to overview the molecular mechanisms and psychiatric implications of PACAP-dependent stress responses

    Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome

    Get PDF
    3q29 microdeletion, a rare recurrent copy number variant (CNV), greatly confers an increased risk of psychiatric disorders, such as schizophrenia and autism spectrum disorder (ASD), as well as intellectual disability. However, disease-relevant cellular phenotypes of 3q29 deletion syndrome remain to be identified. To reveal the molecular and cellular etiology of 3q29 deletion syndrome, we generated a mouse model of human 3q29 deletion syndrome by chromosome engineering, which achieved construct validity. 3q29 deletion (Df/+) mice showed reduced body weight and brain volume and, more importantly, impaired social interaction and prepulse inhibition. Importantly, the schizophrenia-related impaired prepulse inhibition was reversed by administration of antipsychotics. These findings are reminiscent of the growth defects and neuropsychiatric behavioral phenotypes in patients with 3q29 deletion syndrome and exemplify that the mouse model achieves some part of face validity and predictive validity. Unbiased whole-brain imaging revealed that neuronal hyperactivation after a behavioral task was strikingly exaggerated in a restricted region of the cortex of Df/+ mice. We further elucidated the cellular phenotypes of neuronal hyperactivation and the reduction of parvalbumin expression in the cortex of Df/+ mice. Thus, the 3q29 mouse model provides invaluable insight into the disease-causative molecular and cellular pathology of psychiatric disorders

    Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine

    Get PDF
    Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research

    PACAP centrally mediates emotional stress-induced corticosterone responses in mice

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide widely distributed in the nervous system. Recently, PACAP was shown to be involved in restraint stress-induced corticosterone release and concomitant expression of the genes involved in hypothalamic–pituitary–adrenal (HPA) axis activation. Therefore, in this study, we have addressed the types of stressors and the levels of the HPA axis in which PACAP signaling is involved using mice lacking PACAP (PACAP−/−). Among four different types of stressors, open-field exposure, cold exposure, ether inhalation, and restraint, the corticosterone response to open-field exposure and restraint, which are categorized as emotional stressors, but not the other two, was markedly attenuated in PACAP−/− mice. Peripheral administration of corticotropin releasing factor (CRF) or adrenocorticotropic hormone induced corticosterone increase similarly in PACAP and wild-type mice. In addition, the restraint stress-induced c-Fos expression was significantly decreased in the paraventricular nucleus (PVN) and medial amygdala (MeA), but not the medial prefrontal cortex, in PACAP−/− mice. In the PVN of PACAP−/− mice, the stress-induced c-Fos expression was blunted in the CRF neurons. These results suggest that PACAP is critically involved in activation of the MeA and PVN CRF neurons to centrally regulate the HPA axis response to emotional stressors

    Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

    Get PDF

    精神疾患におけるVPAC2受容体の病態生理学的役割

    No full text

    Generation of a monoclonal antibody reactive to prefusion myocytes.

    Get PDF
    We established a novel monoclonal antibody, Yaksa that is specific to a subpopulation of myogenic cells. The Yaksa antigen is not expressed on the surface of growing myoblasts but only on a subpopulation of myogenin-positive myocytes. When Yaksa antigen-positive mononucleated cells were freshly prepared from a murine myogenic cell by a cell sorter, they fused with each other and formed multinucleated myotubes shortly after replating while Yaksa antigen-negative cells scarcely generated myotubes. These results suggest that Yaksa could segregate fusion-competent, mononucleated cells from fusion-incompetent cells during muscle differentiation. The Yaksa antigen was also expressed in developing muscle and regenerating muscle in vivo and it was localized at sites of cell-cell contact between mono-nucleated muscle cells and between mono-nucleated muscle cells and myotubes. Thus, Yaksa that marks prefusion myocytes before myotube formation can be a useful tool to elucidate the cellular and molecular mechanisms of myogenic cell fusion
    corecore