90 research outputs found

    Vascular Adhesion Protein-1 Blockade Suppresses Ocular Inflammation After Retinal Laser Photocoagulation in Mice

    Get PDF
    PURPOSE. To investigate the effect of the vascular adhesion protein-1 (VAP-1) inhibitor RTU-1096 on retinal morphologic changes and ocular inflammation after retinal laser photocoagulation in mice. METHODS. C57BL/6JJcl mice were fed a diet containing RTU-1096, a specific inhibitor for VAP-1, or a control diet ad libitum for 7 days. Laser photocoagulation was performed on the peripheral retina of the animals. The semicarbazide sensitive amine oxidase (SSAO) activities in plasma and chorioretinal tissues were measured. Optical coherence tomography (OCT) images were acquired before and at 1, 3, and 7 days after laser photocoagulation, and thickness of the individual retinal layers was measured. Intravitreal leukocyte infiltration was assessed by histologic analysis. The expression level of intercellular adhesion molecule-1 (ICAM-1) in retinal tissues were examined by quantitative real-time PCR. RESULTS. One day after laser photocoagulation, the thickness of the outer nuclear layer (ONL) increased in the laser group compared with in the control group, and RTU-1096 administration abrogated the ONL thickening. Histologic analysis and OCT observation revealed that laser photocoagulation caused infiltration of inflammatory cells and the appearance of hyperreflective foci at the vitreoretinal surface, both of which were suppressed by RTU-1096 administration. In addition, systemic administration of RTU-1096 reduced upregulation of the leukocyte adhesion molecules ICAM-1 in the retina. CONCLUSIONS. The current data indicate that VAP-1/SSAO inhibition may be a potential therapeutic strategy for the prevention of macular edema secondary to scatter laser photocoagulation in patients with ischemic retinal diseases such as diabetic retinopathy

    Tissue factor expression in human pterygium

    Get PDF
    Purpose: A pterygium shows tumor-like characteristics, such as proliferation, invasion, and epithelial–mesenchymal transition (EMT). Previous reports suggest that tissue factor (TF) expression is closely related to the EMT of tumor cells, and subsequent tumor development. In this study, we analyzed the expression and immunolocalization of TF in pterygial and normal conjunctival tissues of humans. Methods: Eight pterygia and three normal bulbar conjunctivas, surgically removed, were used in this study. Formalinfixed, paraffin-embedded tissues were submitted for immunohistochemical analysis with anti-TF antibody. Double staining immunohistochemistry was performed to assess TF and alpha-smooth muscle actin (α-SMA) or epidermal growth factor receptor (EGFR) expression in the pterygia. Results: Immunoreactivity for TF was detected in all pterygial tissues examined. TF immunoreactivity was localized in the cytoplasm of basal, suprabasal, and superficial epithelial cells. The number of TF-immunopositive cells in pterygial epithelial cells was significantly higher than in normal conjunctival epithelial cells (p<0.001). TF immunoreactivity was detected in α-SMA-positive or -negative pterygial epithelial cells. EGFR immunoreactivity was detected in pterygial epithelium, which was colocalized with TF. Conclusions: These results suggest that TF plays a potential role in the pathogenesis and development of a pterygium, and that TF expression might be involved through EMT-dependent and -independent pathways

    Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy

    Get PDF
    Vascular endothelial growth factor (VEGF)-A-driven angiogenesis contributes to various disorders including cancer and proliferative diabetic retinopathy (PDR). Among several VEGF-A blockers clinically used is aflibercept, a chimeric VEGFR1/VEGFR2-based decoy receptor fused to the Fc fragment of IgG1 (i.e., VEGFR1/VEGFR2-Fc). Here, we revealed a novel anti-angiogenic function for aflibercept beyond its antagonism against VEGF family members. Immunoprecipitation and mass spectrometry analyses identified galectin-1 as an aflibercept-interacting protein. Biolayer interferometry revealed aflibercept binding to galectin-1 with higher affinity than VEGFR1-Fc and VEGFR2-Fc, which was abolished by deglycosylation of aflibercept with peptide: N-glycosidase F. Retinal LGALS1/Galectin-1 mRNA expression was enhanced in vitro by hypoxic stimulation and in vivo by induction of diseases including diabetes. Galectin-1 immunoreactivity co-localized with VEGFR2 in neovascular tissues surgically excised from human eyes with PDR. Compared with non-diabetic controls, intravitreal galectin-1 protein levels were elevated in PDR eyes, showing no correlation with increased VEGF-A levels. Preoperative injection of bevacizumab, a monoclonal antibody to VEGF-A, reduced the VEGF-A, but not galectin-1, levels. Galectin-1 application to human retinal microvascular endothelial cells up-regulated VEGFR2 phosphorylation, which was eliminated by aflibercept. Our present findings demonstrated the neutralizing efficacy of aflibercept against galectin-1, an angiogenic factor associated with PDR independently of VEGF-A

    Anatomy and Pathology/Oncology Involvement of the Receptor-Associated Prorenin System in the Pathogenesis of Human Conjunctival Lymphoma

    No full text
    PURPOSE. Extranodal marginal zone B-cell lymphoma (EMZL) is the most common subtype of conjunctival lymphoma, though its molecular mechanisms of pathogenesis are largely unknown. We attempted to explore the association of the renin-angiotensin system (RAS) and (pro)renin receptor ([P]RR) in the pathogenesis of conjunctival lymphoma. METHODS. Surgically removed conjunctiva EMZL samples were used for gene expression, and immunohistochemical and immunofluorescence analyses of (P)RR and RAS components. Human B-lymphoblast IM-9 cells were treated with prorenin or angiotensin II (Ang II), and gene expression levels were analyzed using real-time quantitative PCR (qPCR). In addition, immunofluorescence analysis of EMZL samples was used to evaluate the in vivo expression of those components. RESULTS. Gene expression and immunohistochemical analyses revealed the expression of RAS components, including (P)RR and angiotensin II type 1 receptor (AT1R), in EMZL tissues. Doublelabeling analyses demonstrated that (P)RR and AT1R were detected in cells positive for CD20, a marker for B-cells, where they colocalized with prorenin and angiotensinogen, respectively. Prorenin stimulation of human B-lymphoblast IM-9 cells increased mRNA expression levels of fibroblast growth factor 2 (FGF2), while angiotensin II treatment upregulated the expression levels of basigin (BSG), matrix metallopeptidase (MMP)2, 9, and 14, which were abolished by (P)RR and AT1R blockades, respectively. Immunofluorescence analyses of clinical samples showed colocalizations of (P)RR and AT1R with the products of these upregulated genes. CONCLUSIONS. The present study suggests that activation of (P)RR and AT1R is associated with the pathogenesis of conjunctival EMZL by stimulating the production of FGF2 and MMPs

    Angiopoietin-like protein 2 mediates endotoxin-induced acute inflammation in the eye

    Get PDF
    Angiopoietin-like protein (Angptl) 2 is a key mediator linking obesity to chronic adipose-tissue inflammation and systemic insulin resistance, and increasing evidence has shown that Angptl2 is associated with various chronic inflammatory diseases such as cancer and dermatomyositis; however, it remains unclear that Angptl2 functions in acute inflammation. In this study, we investigate whether Angptl2 has a role in acute inflammation in the eye with endotoxin-induced uveitis (EIU). Angptl2 was widely expressed in the normal mouse retina, while Angptl2^[-/-] mice did not exhibit any changes in retinal cell marker expression and morphological analyses. Treatment with lipopolysaccharide (LPS) stimulated retinal Angptl2 mRNA expression in vivo and in vitro. We generated EIU in wild-type (C57BL/6) and Angptl2^[-/-] mice by injecting LPS intraperitoneally. Compared to wild-type animals, Angptl2^[-/-] mice significantly reduced various EIU-associated cellular and molecular parameters including leukocyte adhesion to the retinal vessels and infiltration into the vitreous cavity and retinal mRNA expression levels of monocyte chemotactic protein-1, intercellular adhesion molecule-1, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, together with nuclear translocation of nuclear factor (NF)-κB p65 subunit. In vitro, antibody-based inhibition of α5β1 integrin, a receptor for Angptl2, significantly repressed LPS-induced expression of IL-6 and TNF-α, both of which are the major inflammatory cytokines derived from macrophages. The present findings indicate that Angptl2 mediates endotoxin-induced retinal inflammation through the activation of NF-κB signaling pathway and suggest a potential validity of Angptl2 as a new molecular target for the treatment of acute inflammation

    Atp6ap2/(Pro)renin Receptor Interacts with Par3 as a Cell Polarity Determinant Required for Laminar Formation during Retinal Development in Mice

    Get PDF
    (Pro) renin receptor [(P)RR], also known as Atp6ap2, has attracted growing attention as a key molecule for tissue renin-angiotensin system (RAS). In addition to its role in tissue RAS activation, A tp6ap2/(P)RR was originally identified as an accessory subunit for vacuolar H+-ATPase (v-ATPase), which is a multisubunit proton pump involved in diverse and fundamental cellular physiology. In this study, to elucidate the physiological function of Atp6ap2/(P) RR during retinal development in mammals, we used Cre-LoxP system to generate photoreceptor-specific conditional knock-out (CKO) mice, and revealed a critical role of Atp6ap2/(P) RR in photoreceptor development. Deletion of photoreceptor Atp6ap2/(P) RR did not affect retinal cell differentiation, but led to laminar disorganization around the outer nuclear layer together with severe dysfunction of photoreceptor cells. In the CKO mice, cell adhesion and polarity molecules, some of which were colocalized with Atp6ap2/(P) RR at the apical edge of the wild-type developing retina, were substantially dispersed together with mislocalization of retinal progenitor cells apart from the apical surface. Among theses molecules, coimmunoprecipitation using retinal homogenates and ATP6AP2/(P) RR-transfected cells showed that Atp6ap2/(P) RR interacted with partitioning defective 3 homolog (PAR3) protein, which is known to function in the Par-atypical protein kinase C (aPKC) system. Furthermore, yeast two-hybrid assays demonstrated direct molecular interaction between ATP6AP2/(P) RR and PAR3. Our present data revealed the novel function of Atp6ap2/(P) RR required for laminar formation during retinal development. We propose that this cellular activity associated with the Par-aPKC system, in addition to the v-ATPase function and tissue RAS activation, is the third biological role of Atp6ap2/(P) RR
    corecore