12 research outputs found

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes—an international multicentre retrospective study

    Full text link
    Background Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to noncancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Integrated PERSEVERE and endothelial biomarker risk model predicts death and persistent MODS in pediatric septic shock: a secondary analysis of a prospective observational study

    No full text
    Abstract Background Multiple organ dysfunction syndrome (MODS) is a critical driver of sepsis morbidity and mortality in children. Early identification of those at risk of death and persistent organ dysfunctions is necessary to enrich patients for future trials of sepsis therapeutics. Here, we sought to integrate endothelial and PERSEVERE biomarkers to estimate the composite risk of death or organ dysfunctions on day 7 of septic shock. Methods We measured endothelial dysfunction markers from day 1 serum among those with existing PERSEVERE data. TreeNet® classification model was derived incorporating 22 clinical and biological variables to estimate risk. Based on relative variable importance, a simplified 6-biomarker model was developed thereafter. Results Among 502 patients, 49 patients died before day 7 and 124 patients had persistence of MODS on day 7 of septic shock. Area under the receiver operator characteristic curve (AUROC) for the newly derived PERSEVEREnce model to predict death or day 7 MODS was 0.93 (0.91–0.95) with a summary AUROC of 0.80 (0.76–0.84) upon tenfold cross-validation. The simplified model, based on IL-8, HSP70, ICAM-1, Angpt2/Tie2, Angpt2/Angpt1, and Thrombomodulin, performed similarly. Interaction between variables—ICAM-1 with IL-8 and Thrombomodulin with Angpt2/Angpt1—contributed to the models’ predictive capabilities. Model performance varied when estimating risk of individual organ dysfunctions with AUROCS ranging from 0.91 to 0.97 and 0.68 to 0.89 in training and test sets, respectively. Conclusions The newly derived PERSEVEREnce biomarker model reliably estimates risk of death or persistent organ dysfunctions on day 7 of septic shock. If validated, this tool can be used for prognostic enrichment in future pediatric trials of sepsis therapeutics. Graphical abstrac

    Prognostic and predictive value of endothelial dysfunction biomarkers in sepsis-associated acute kidney injury: risk-stratified analysis from a prospective observational cohort of pediatric septic shock

    No full text
    Abstract Background Sepsis-associated acute kidney injury (SA-AKI) is associated with high morbidity, with no current therapies available beyond continuous renal replacement therapy (CRRT). Systemic inflammation and endothelial dysfunction are key drivers of SA-AKI. We sought to measure differences between endothelial dysfunction markers among children with and without SA-AKI, test whether this association varied across inflammatory biomarker-based risk strata, and develop prediction models to identify those at highest risk of SA-AKI. Methods Secondary analyses of prospective observational cohort of pediatric septic shock. Primary outcome of interest was the presence of ≥ Stage II KDIGO SA-AKI on day 3 based on serum creatinine (D3 SA-AKI SCr). Biomarkers including those prospectively validated to predict pediatric sepsis mortality (PERSEVERE-II) were measured in Day 1 (D1) serum. Multivariable regression was used to test the independent association between endothelial markers and D3 SA-AKI SCr. We conducted risk-stratified analyses and developed prediction models using Classification and Regression Tree (CART), to estimate risk of D3 SA-AKI among prespecified subgroups based on PERSEVERE-II risk. Results A total of 414 patients were included in the derivation cohort. Patients with D3 SA-AKI SCr had worse clinical outcomes including 28-day mortality and need for CRRT. Serum soluble thrombomodulin (sTM), Angiopoietin-2 (Angpt-2), and Tie-2 were independently associated with D3 SA-AKI SCr. Further, Tie-2 and Angpt-2/Tie-2 ratios were influenced by the interaction between D3 SA-AKI SCr and risk strata. Logistic regression demonstrated models predictive of D3 SA-AKI risk performed optimally among patients with high- or intermediate-PERSEVERE-II risk strata. A 6 terminal node CART model restricted to this subgroup of patients had an area under the receiver operating characteristic curve (AUROC) 0.90 and 0.77 upon tenfold cross-validation in the derivation cohort to distinguish those with and without D3 SA-AKI SCr and high specificity. The newly derived model performed modestly in a unique set of patients (n = 224), 84 of whom were deemed high- or intermediate-PERSEVERE-II risk, to distinguish those patients with high versus low risk of D3 SA-AKI SCr. Conclusions Endothelial dysfunction biomarkers are independently associated with risk of severe SA-AKI. Pending validation, incorporation of endothelial biomarkers may facilitate prognostic and predictive enrichment for selection of therapeutics in future clinical trials among critically ill children. Graphical abstrac

    Detrimental effects of PCSK9 loss-of-function in the pediatric host response to sepsis are mediated through independent influence on Angiopoietin-1

    No full text
    Background: Sepsis is associated with significant mortality. Yet, there are no efficacious therapies beyond antibiotics. PCSK9 loss-of-function (LOF) and inhibition, through enhanced low-density lipoprotein receptor (LDLR) mediated endotoxin clearance, holds promise as a potential therapeutic approach among adults. In contrast, we have previously demonstrated higher mortality in the juvenile host. Given the potential pleiotropic effects of PCSK9 on the endothelium, beyond canonical effects on serum lipoproteins, both of which may influence sepsis outcomes, we sought to test the influence of PCSK9 LOF genotype on endothelial dysfunction. Methods Secondary analyses of a prospective observational cohort of pediatric septic shock. Genetic variants of PCSK9 and LDLR genes, serum PCSK9, and lipoprotein concentrations were determined previously. Endothelial dysfunction markers were measured in day 1 serum. We conducted multivariable linear regression to test the influence of PCSK9 LOF genotype on endothelial markers, adjusted for age, complicated course, and low- and high-density lipoproteins (LDL and HDL). Causal mediation analyses to test impact of select endothelial markers on the association between PCSK9 LOF genotype and mortality. Juvenile Pcsk9 null and wildtype mice were subject to cecal slurry sepsis and endothelial markers were quantified. Results A total of 474 patients were included. PCSK9 LOF was associated with several markers of endothelial dysfunction, with strengthening of associations after exclusion of those homozygous for the rs688 LDLR variant that renders it insensitive to PCSK9. Serum PCSK9 was not correlated with endothelial dysfunction. PCSK9 LOF influenced concentrations of Angiopoietin-1 (Angpt-1) upon adjusting for potential confounders including lipoprotein concentrations, with false discovery adjusted p value of 0.042 and 0.013 for models that included LDL and HDL, respectively. Causal mediation analysis demonstrated that the effect of PCSK9 LOF on mortality was mediated by Angpt-1 (p = 0.0008). Murine data corroborated these results with lower Angpt-1 and higher soluble thrombomodulin among knockout mice with sepsis relative to the wildtype. Conclusions We present genetic and biomarker association data that suggest a potential direct role of the PCSK9-LDLR pathway on Angpt-1 in the developing host with septic shock and warrant external validation. Further, mechanistic studies on the role of PCSK9-LDLR pathway on vascular homeostasis may lead to the development of pediatric-specific sepsis therapies. Graphical abstractMedicine, Faculty ofNon UBCMedicine, Department ofReviewedFacultyResearcherOthe
    corecore