7 research outputs found

    Rosettes & Ribbons: Some Recent Accomplishments of Note at the School

    Get PDF
    Developing a simple produces for efficient derivation of motor neurons (MNs) is essential for neural tissue engineering studies. Stem cells with high capacity for neural differentiation and scaffolds with the potential to promote motor neurons differentiation are promising candidates for neural tissue engineering. Recently, human olfactory ecto-mesenchymal stem cells (OE-MSCs), which are isolated easily from the olfactory mucosa, are considered a new hope for neuronal replacement due to their neural crest origin. Herein, we synthesized conducting hydrogels using different concentration of chitosan-g-aniline pentamer, gelatin, and agarose. The chemical structures, swelling and deswelling ratio, ionic conductivity and thermal properties of the hydrogel were characterized. Scaffolds with 10 chitosan-g-aniline pentamer/gelatin (S10) were chosen for further investigation and the potential of OE-MSCs as a new source for programming to motor neuron-like cells investigated on tissue culture plate (TCP) and conductive hydrogels. Cell differentiation was evaluated at the level of mRNA and protein synthesis and indicated that conductive hydrogels significantly increased the markers related to motor neurons including Hb-9, Islet-1 and ChAT compared to TCP. Taken together, the results suggest that OE-MSCs would be successfully differentiated into motor neuron-like cells on conductive hydrogels and would have a promising potential for treating motor neuron-related diseases. © 201

    Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications

    No full text
    One of the most effective approaches for treatment of chronic rhinosinusitis is the use of hydrogel scaffolds with the sustained release of a given required drug. With this in mind, first, we synthesized and characterized poly (lactide-co-glycolide) (PLGA) micro and nano particles loaded with dexamethasone (DEX). We observed a 7-day release of DEX from nanoparticles, while the microparticles showed a 22-day release profile. Due to their slower rate of release, the PLGA microparticles loaded with DEX (PLGADEX microparticles) were specifically chosen for this study. As a second step, chitosan/polyvinylpyrrolidone (PVP) based hydrogels were prepared in various weight ratios and the PLGADEX microparticles were optimized in their structure based on variable gelation times. The morphological studies showed PLGADEX microparticles homogenously dispersed in the hydrogels. Moreover, the effect of weight ratio in the presence and absence of optimum percentage of PLGADEX microparticles was studied. The resultant hydrogels demonstrated a range of advantages, including good mechanical strength, porous morphology, amorphous structure, high swelling ratio, controlled biodegradability rate, and antibacterial activity. Additionally, a cytotoxicity analysis confirmed that the hydrogel scaffolds do not have adverse effects on the cells; our release studies in the hydrogel with the highest PVP content also showed 80 release after 30 days. Based on these results we were able to predict and control some of the mechanical properties, including the microstructure of the scaffolds, as well as the drug release, by optimizing the polymers - microparticle concentration, plus their resulting interactions. This optimized hydrogel can become part of a suitable alternative for treatment of allergic rhinitis and chronic sinusitis. © 2020 Elsevier B.V

    Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications

    No full text
    One of the most effective approaches for treatment of cartilage involves the use of porous three-dimensional scaffolds, which are useful for improving not only cellular adhesion but also mechanical properties of the treated tissues. In this study, we manufactured a composite scaffold with optimum properties to imitate nasal cartilage attributes. Cartilage extracellular matrix (ECM) was used in order to improve the cellular properties of the scaffolds; while, chitosan and agarose were main materials that are used to boost the mechanical and rheological properties of the scaffolds. Furthermore, we explored the effect of the various weight ratios of chitosan, agarose, and ECM on the mechanical and biomedical properties of the composite scaffolds using the Taguchi method. The resulting composites display a range of advantages, including good mechanical strength, porous morphology, partial crystallinity, high swelling ratio, controlled biodegradability rate, and rheological characteristics. Additionally, we performed the cytotoxicity tests to confirm the improvement of the structure and better cell attachments on the scaffolds. Our findings illustrate that the presence of the ECM in chitosan/agarose structure improves the biomedical characteristics of the final scaffold. In addition, we were able to control the mechanical properties and microstructure of the scaffolds by optimizing the polymers' concentration and their resulting interactions. These results present a novel scaffold with simultaneously enhanced mechanical and cellular attributes comparing to the scaffolds without ECM for nasal cartilage tissue engineering applications. © 201

    Poloxamer: A versatile tri-block copolymer for biomedical applications

    No full text
    Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials promising candidates for biomedical application such as tissue engineering and drug delivery. The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. Poloxamers are also used for the modification of hydrophobic tissue-engineered constructs. This article collects the recent advances in design and application of poloxamer-based biomaterials in tissue engineering, drug/gene delivery, theranostic devices, and bioinks for 3D printing. Statement of significance: Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. However, no reports have systematically reviewed the critical role of poloxamer for biomedical applications. Research on poloxamers is growing today opening new scenarios that expand the potential of these biomaterials from �traditional� treatments to a new era of tissue engineering. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature. © 2020 Acta Materialia Inc

    Chitosan in Biomedical Engineering: A Critical Review

    No full text
    corecore