167 research outputs found

    One-dimensional Si chains embedded in Pt(111)and protected by a hexagonal boron-nitride monolayer

    Full text link
    Using scanning tunneling microscopy, we show that Si deposition on Pt(111) at 300K leads to a network of one-dimensional Si chains. On the bare Pt(111) surface, the chains, embedded into the Pt surface, are orientated along the -direction. They disappear within a few hours in ultrahigh vacuum due to the presence of residual gas. Exposing the chains to different gases deliberately reveals that CO is largely responsible for the disappearance of the chains. The chains can be stabilized by a monolayer of hexagonal boron nitride, which is deposited prior to the Si deposition. The resulting Si chains are rotated by 30{\deg} with respect to the chains on the bare Pt(111) surface and survive even an exposure to air for 10 minutes.Comment: 8 pages, 4 Figure

    Chemical versus van der Waals Interaction: The Role of the Heteroatom in the Flat Absorption of Aromatic Molecules C6H6, C5NH5, and C4N2H4 on the Cu(110) Surface

    Get PDF
    We perform first-principles calculations aimed at investigating the role of a heteroatom such as N in the chemical and long-range van der Waals (vdW) interactions for a flat adsorption of several-conjugated molecules on the Cu(110) surface. Our study reveals that the alignment of the molecular orbitals at the adsorbate-substrate interface depends on the number of heteroatoms. As a direct consequence, the molecule-surface vdW interactions involve not only pi-like orbitals which are perpendicular to the molecular plane but also sigma-like orbitals delocalized in the molecular plane

    Graphene on the Ir(111) surface: from van der Waals to strong bonding

    Get PDF
    We calculated the properties of a graphene monolayer on the Ir(111) surface, using the model in which the periodicities of the two structures are assumed equal, instead of the observed slight mismatch which leads to a large superperiodic unit cell. We used the density functional theory approach supplemented with the recently developed van der Waals-density function (vdW-DF) non-local correlation functional. The latter is essential for treating the vdW interaction, which is crucial for the adsorption distances and energies of the rather weakly bound graphene. When additional iridium atoms are put on top of graphene, the electronic structure of C atoms acquires the sp(3) character and strong bonds with the iridium atoms are formed. We discuss the validity of the approximations used and their relevance to other graphene-metal systems

    Real-space electronic-structure calculations with full-potential all-electron precision for transition-metals

    Get PDF
    We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals, and have obtained excellent agreement with the results of other precise first-principles methods such as a plane wave based PAW method and an all-electron full-potential linearized augmented plane wave (FLAPW) method.Comment: 29 Page

    Hybridisation at the organic-metal interface: a surface-scientific analogue of H\"uckel's rule?

    Full text link
    We demonstrate that cyclooctatetraene (COT) can be stabilised in different conformations when adsorbed on different noble-metal surfaces due to varying molecule-substrate interaction. While at first glance the behaviour seems to be in accordance with H\"uckel's rule, a theoretical analysis reveals no significant charge transfer. The driving mechanism for the conformational change is hybridisation at the organic-metal interface and does not necessitate any charge transfer.Comment: Accepted for publication in Chemical Communications. Main article: 6 pages, 2 figures; Supplementary Information: 4 pages, 3 figures, 1 table. All in one fil

    Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution

    Get PDF
    We investigate the spin- and energy dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin-dependence of tunneling current flow. State-of-the-art ab initio calculations including also van-der-Waals interactions reveal a strong hybridization of molecular orbitals and surface 3d states. The molecule is anionic due to a transfer of one electron, resulting in a non-magnetic (S= 0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin-dependence due to spin-split molecule-surface hybrid states.Comment: Version of Submission, 18-03-201

    Controlling the Local Spin-Polarization at the Organic-Ferromagnetic Interface

    Get PDF
    By means of ab initio calculations and spin-polarized scanning tunneling microscopy experiments we show how to manipulate the local spin-polarization of a ferromagnetic surface by creating a complex energy dependent magnetic structure. We demonstrate this novel effect by adsorbing organic molecules containing pi(pz)-electrons onto a ferromagnetic surface, in which the hybridization of the out-of-plane pz atomic type orbitals with the d-states of the metal leads to the inversion of the spin-polarization at the organic site due to a pz - d Zener exchange type mechanism. As a key result, we demonstrate that it is possible to selectively inject spin-up and spin-down electrons from the same ferromagnetic surface, an effect which can be exploited in future spintronic devices

    DFT with nonlocal correlation: A key to the solution of the CO adsorption puzzle

    Get PDF
    We study the chemisorption of CO molecule into sites of different coordination on (111) surfaces of late 4d and 5d transition metals. In an attempt to solve the well-known CO adsorption puzzle, i.e. discrepancies of adsorption site preferences with experiment which appear in the standard Density Functional Theory calculations, we have applied the relatively new vdW-DF functional of nonlocal correlation. In all considered cases this reduces or completely solves the site preference discrepancies and improves the value of the adsorption energy. By introducing a cutoff distance for nonlocal interaction we can pinpoint the length scale at which the correlation plays a major role in the systems considered

    JuNoLo - Jülich nonlocal code for parallel post-processing evaluation of vdW-DF correlation energy

    Get PDF
    Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post-DFT calculation approach. i.e. by applying the functional to the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N-2 where N is the number of points in which the density is defined, and a massively parallel calculation is welcome for a wider applicability of the new approach. In this article we present a code which accomplishes this goal
    corecore